C++单一职责原则示例代码浅析
北冥有鱼丶丶 人气:0单一职责原则:
就一个类而言,应该只有一个引起它变化的原因,如果一个类承担的职责过多就等于把这些职责耦合在一起,至少会造成以下两方面的问题:
- 我们要去修改该类中的一个职责可能会影响到该类的其它职责。这种耦合会导致脆弱的设计,当变化发生时,设计会遭受到意想不到的破坏。
- 当客户端仅需要该对象的某一个职责时,不得不将其他不需要的职责全都包含进来,从而造成冗余代码或代码的浪费。
我们在设计一个类时要学会发现职责,并把那些职责相互分离,其实要去判断是否应该分离出一个类来并不难,前面说过,一个类应该只有一个引起它变化的原因,如果你能想到其它的原因也能去改变这个类,那么这个类就具有多于1个的职责,就应该考虑类的职责分离。
在之前的这篇博客中,传送门,我们实现的计算器实际上也用到了单一职责原则,这里我们选出其中最经典的3.0版本和5.0版本来学习单一职责原则。
3.0版本计算器代码如下:
#include<iostream> using namespace std; #include<string> //业务逻辑 //异常类用于处理异常情况 class opeException { public: void getMessage() { cout << "您的输入有误!" << endl; } }; //运算类用于处理运算 class Operation { public: Operation(string& _num1, string& _num2, string& _ope) :num1(_num1), num2(_num2), ope(_ope){} //获取运算结果 int getResult() { if (!(isStringNum(num1) && isStringNum(num2) && (ope == "+" || ope == "-" || ope == "*" || ope == "/"))) throw opeException(); if (ope == "+") { re = stoi(num1) + stoi(num2); } else if (ope == "-") { re = stoi(num1) - stoi(num2); } else if (ope == "*") { re = stoi(num1) * stoi(num2); } else if (ope == "/") { if (stoi(num2) != 0) { re = stoi(num1) / stoi(num2); } else throw opeException(); } return re; } private: int re; string num1; string num2; string ope; //判断一个字符串是不是数字 bool isStringNum(string& s) { bool flag = true; for (auto e : s) if (!(isdigit(e))) { flag = false; break; } return flag; } }; //界面逻辑 int main() { try { string _num1 = " "; string _num2 = " "; string _ope = " "; cout << "请输入左操作数:" << endl; cin >> _num1; cout << "请输入右操作数:" << endl; cin >> _num2; cout << "请输入操作符" << endl; cin >> _ope; Operation operation(_num1, _num2, _ope); cout << operation.getResult() << endl; } catch (opeException &ex) { ex.getMessage(); } return 0; }
仅仅一个运算类Operation就实现了加减乘除4种功能,很明显在这个类中我至少有4个原因去修改这个类,我修改加法算法的时候可能会影响到其它的运算算法,这个类的耦合太高且严重违反了单一职责原则。
修改后的5.0版本如下:
#include<iostream> using namespace std; #include<string> //业务逻辑 //异常类用于处理异常情况 class opeException { public: void getMessage() { cout << "您的输入有误!" << endl; } }; //运算类 class Operation { //判断一个字符串是不是数字 bool isStringNum(string& s) { bool flag = true; for (auto e : s) if (!(isdigit(e))) { flag = false; break; } return flag; } protected: bool isError(string& _strNum1, string& _strNum2, string& _ope) { if (!(Operation::isStringNum(_strNum1) && Operation::isStringNum(_strNum2) && (_ope == "+" || _ope == "-" || _ope == "*" || _ope == "/"))) { return false; } } public: virtual int getResult() = 0; }; //加法运算类 class addOperation :public Operation { private: string strNum1; string strNum2; string ope; int re; public: addOperation(string& _strNum1, string& _strNum2, string& _ope) :strNum1(_strNum1), strNum2(_strNum2), ope(_ope), re(0) {} virtual int getResult() override { if (!isError(strNum1, strNum2, ope)) throw opeException(); else re = stoi(strNum1) + stoi(strNum2); return re; } }; //减法运算类 class subOperation :public Operation { private: string strNum1; string strNum2; string ope; int re; public: subOperation(string& _strNum1, string& _strNum2, string& _ope) :strNum1(_strNum1), strNum2(_strNum2), ope(_ope), re(0) {} virtual int getResult() override { if (!isError(strNum1, strNum2, ope)) throw opeException(); else re = stoi(strNum1) - stoi(strNum2); return re; } }; //乘法运算类 class mulOperation :public Operation { private: string strNum1; string strNum2; string ope; int re; public: mulOperation(string& _strNum1, string& _strNum2, string& _ope) :strNum1(_strNum1), strNum2(_strNum2), ope(_ope), re(0) {} virtual int getResult() override { if (!isError(strNum1, strNum2, ope)) throw opeException(); else re = stoi(strNum1) * stoi(strNum2); return re; } }; //除法运算类 class divOperation :public Operation { private: string strNum1; string strNum2; string ope; int re; public: divOperation(string& _strNum1, string& _strNum2, string& _ope) :strNum1(_strNum1), strNum2(_strNum2), ope(_ope), re(0) {} virtual int getResult() override { if (!isError(strNum1, strNum2, ope)) throw opeException(); else if (stoi(strNum2) != 0) re = stoi(strNum1) / stoi(strNum2); else throw opeException(); return re; } }; //运算工厂类 class OpeFactory { public: Operation& choose(string &_strNum1,string &_strNum2,string &_ope) { if (_ope == "+") { operation = new addOperation(_strNum1, _strNum2, _ope); } else if (_ope == "-") operation = new subOperation(_strNum1, _strNum2, _ope); else if (_ope == "*") operation = new mulOperation(_strNum1, _strNum2, _ope); else if (_ope == "/") { operation = new divOperation(_strNum1, _strNum2, _ope); } else operation = nullptr; return *operation; } private: Operation* operation; }; //界面逻辑 int main() { try { string _strNum1 = " "; string _strNum2 = " "; string _ope = " "; cout << "请输入左操作数:" << endl; cin >> _strNum1; cout << "请输入右操作数:" << endl; cin >> _strNum2; cout << "请输入操作符:" << endl; cin >> _ope; OpeFactory factory; Operation* re = &factory.choose(_strNum1, _strNum2, _ope); if (re != nullptr) cout << (*re).getResult() << endl; else cout << "您的输入有误!" << endl; } catch (opeException ex) { cout << "您的输入有误" << endl; } return 0; }
在5.0版本的计算器代码中,我们将运算类分成了4种类,分别是加法类、减法类、乘法类、除法类,还创建了一个工厂类专门用于根据不同情况实例化对象,每个类只有一个职责,我们要修改某个功能只需要去修改对应的类即可,极大降低了代码之间的耦合。
单一职责原则的核心就是控制类的粒度大小、将对象解耦、提高其内聚性。如果遵循单一职责原则将有以下优点:
- 降低类的复杂度。一个类只负责一项职责,其逻辑肯定要比负责多项职责简单得多。
- 提高类的可读性。复杂性降低,自然其可读性会提高。
- 提高系统的可维护性。可读性提高,那自然更容易维护了。
- 变更引起的风险降低。变更是必然的,如果单一职责原则遵守得好,当修改一个功能时,可以显著降低对其他功能的影响。
加载全部内容