Python OpenCV Hough
乔卿 人气:0直线检测原理
核心要点:图像坐标空间、参数空间、极坐标参数空间 -> (极坐标)参数空间表决
给定一个点,我们一般会写成y=ax+b的形式,这是坐标空间的写法;我们也可以写成b=-xa+y的形式,这是参数空间的写法。也就是说,给定一个点,那么经过该点的直线的参数必然满足b=-xa+y这一条件,也就是必然在参数空间中b=-xa+y这条直线上。如果给定两个点,那么这两点确定的唯一的直线的参数,就是参数空间中两条参数直线的交点。
由于上述写法不适合处理水平或垂直的直线,我们可以使用极坐标的形式描述直线,即ρ=xcosθ+ysinθ,其中ρ是从原点到直线的垂直距离,θ是由这条垂直线和水平轴形成的角度(以逆时针方向测量),
如下图所示:
因此,任何垂直线θ=0,水平线θ=90°。那么极坐标参数空间中的曲线交点就是由两个点确定的一条直线,如下图所示。
现在让我们看看Hough变换是如何处理直线的。任何一条线都可以用这两个参数来表示(ρ,θ)。
- 首先创建一个二维数组,即累加器,用来保存两个参数的值,然后最初将其设置为全0。让行表示ρ,列表示θ。数组的尺寸取决于所需的精度。假设希望角度的精度为1度,则需要180列,枚举0°-179°的所有情况。对于ρ,可能的最大距离是图像的对角线长度。因此,以一个像素的精度计算,行数可以是图像的对角线长度。
- 枚举所有的点,对于每一个点,将所有经过这一点的直线对应的参数(ρ,θ)在参数空间中找到对应位置,令该位置的累加器加1,即投票。这一过程如下图所示。
枚举完成所有点之后,累加器中值最大的(若干个)参数组合(ρ,θ)就是经过点最多的(若干条)直线,如下图所示,两条直线对应累加器中最亮的两个点。
总的来说,对于多个点,我们可以用(离散)参数空间表决的方法,记录每个点对应的允许的参数组合,求得那些被允许次数最多的参数组合,就是最多点经过的直线。
在图像矫正任务中,我们经过Canny算子检测出了若干边缘点,这些点主要集中在四个边界上,因此我们只需要使用Hough直线检测,求出四条直线,就能确定四个边界。
OpenCV实现
cv.HoughLines()封装了上述步骤,该函数原型为:
cv.HoughLines(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]) -> lines
参数:
- lines:数组,每一个元素都是一条直线对应的(ρ, θ),ρ以像素为单位,θ以弧度为单位。
- image:输入图像,需要是二值图像,所以在应用hough变换之前应用阈值或canny边缘检测。
- rho:ρ的精度。
- theta:θ的精度。
- threshold:阈值,得票数高于该值的线才被认为是线,由于投票数取决于线上的点数,所以它代表了应该被检测到的线的最小点数。
下面是具体代码:
def hough_detect(image_path): # 读取图像并转换为灰度图像 image = cv2.imread(image_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 使用Canny算子检测边缘 edges = canny_detect(image_path, False) # 使用Hough检测直线 lines = cv2.HoughLines(edges, 1, np.pi/180, 200) # 绘制直线 for line in lines: rho, theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) cv2.imshow('line,jpg', image) cv2.waitKey() hough_detect('images/2.jpeg')
效果:
后面需要调整一下超参数。
加载全部内容