亲宝软件园·资讯

展开

Spring Cloud Ribbon使用

怪 咖@ 人气:0

一、概述

1、Ribbon是什么

Ribbon是Netflix发布的开源项目,Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端负载均衡的框架。

2、Ribbon能干什么

LB负载均衡(Load Balance)是什么?

简单的说就是将用户的请求平摊的分配到多个服务上,从而达到系统的HA(高可用)。
常见的负载均衡有软件Nginx,硬件 F5等。

什么情况下需要负载均衡?

现在Java非常流行微服务,也就是所谓的面向服务开发,将一个项目拆分成了多个项目,其优点有很多,其中一个优点就是:将服务拆分成一个一个微服务后,我们很容易的来针对性的进行集群部署。例如订单模块用的人比较多,我就可以将这个模块多部署几台机器,来分担单个服务器的压力。

这时候有个问题来了,前端页面请求的时候到底请求集群当中的哪一台?既然是降低单个服务器的压力,所以肯定全部机器都要利用起来,而不是说一台用着,其他空余着。这时候就需要用负载均衡了,像这种前端页面调用后端请求的,要做负载均衡的话,常用的就是Nginx。

Ribbon和Nginx负载均衡区别

负载均衡分类

Ribbon负载均衡

Ribbon就属于进程内LB,它只是一个类库,集成于消费方进程。

举例:微服务经常会涉及到A服务调用B服务的接口,这时候就需要用HTTP远程调用框架,常见的有Feign、RestTemplate、HttpClient,假如B服务只有一个节点,这时候我们可以在调用的时候写固定ip来进行调用,假如B服务的节点存在多个(也就是集群),那A服务究竟调用B服务的哪个节点呢,这时候可以通过负载均衡框架来计算出调用哪个,比如轮询调用B服务的多个节点,总不可能一直调用人家的一个服务,这样B服务的集群有什么意义呢?或者也可以随机调用任意节点,总之负载均衡的作用就是避免一直调用一个节点。

大概的流程:RestTemplate或者Feign可以通过注册中心拿到服务提供方的IP+端口,假如提供者有多个,那他就会拿到多个地址,有了这些地址就差访问的时候访问哪个地址的服务了,而Ribbon可以很好的和RestTemplate或者Feign进行集成,来决定调用哪个服务,具体是负载均衡还是随机Ribbon都可以设置。

3、Ribbon现状

项目处于维护状态 ,已经一年多没有更新过了。

https://github.com/Netflix/ribbon

4、未来替代方案

5、架构说明

首先通过上图一定要明白一点:ribbon一定是用在消费方,而不是服务的提供方!

Ribbon在工作时分成两步(这里以Eureka为例,consul和zk同样道理):

其中Ribbon提供了多种策略:比如轮询、随机和根据响应时间加权。

Spring Cloud Eureka服务注册中心入门流程分析

https:

之前写样例时候没有引入spring-cloud-starter-ribbon也可以使用ribbon,这是为什么?

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-ribbon</artifactId>
</dependency>

猜测spring-cloud-starter-netflix-eureka-client自带了spring-cloud-starter-ribbon引用

证明如下: 可以看到spring-cloud-starter-netflix-eureka-client 确实引入了Ribbon(zk和consul注册中心同样是如此)

二、RestTemplate 用法详解

本篇涉及到的项目均使用RestTemplate结合Ribbon来完成远程负载均衡调用!

RestTemplate 用法详解:https:

三、Ribbon核心组件IRule

IRule:根据特定算法中从服务列表中选取一个要访问的服务

Ribbon给提供了很多现成的算法类,IRule就是最顶层的算法类接口,Ribbon默认是轮询规则。假如我们想要修改算法,只需要将算法类注入到容器。然后通过简单的配置就可以修改。

这些算法类都在如下包当中,一般我们只要引入Eureka、zk、consul三个其中一个注册中心的依赖,就会附带Ribbon的依赖,Ribbon依赖就会依赖ribbon-loadbalancer包。

四、实战项目

1、回顾之前的项目

https:

如下是项目当中涉及到的微服务:

ribbon一定是用在消费端,A调用B服务的接口,那么A就是消费端

在这个项目示例当中,在消费者服务当中通过RestTemplate+@LoadBalanced来完成负载均衡调用提供者。

这里调用提供者的时候不再是固定ip,而是通过服务名称调用。相当于通过服务名称向注册中心当中去获取注册的服务,假如注册了两个名称一样的服务,那么就获取到了两个ip,RestTemplate内部控制了访问哪个ip的服务。他是如何负载均衡的?就是和Ribbon无缝结合,具体原理后续再说。

注意:RestTemplate想要通过服务名称来调用,那么一定要配置@LoadBalanced注解,不然会报错的,只有配置了这个注解,RestTemplate才会和Ribbon相结合。

服务名称就是在提供者的application当中配置的。

2、@RibbonClient注解用法

这个注解的意思就是,当RestTemplate调用服务名称为CLOUD-PAYMENT-SERVICE的时候,采用MySelfRule当中注入的负载均衡算法。

@RibbonClient(name = "CLOUD-PAYMENT-SERVICE",configuration=MySelfRule.class)

官方文档明确给出了警告:这个自定义配置类不能放在@ComponentScan所扫描的当前包下以及子包下,否则我们自定义的这个配置类就会被所有的Ribbon客户端所共享,达不到特殊化定制的目的了(也就是一旦被扫描到,RestTemplate直接不管调用哪个服务都会用指定的算法)。

springboot项目当中的启动类使用了@SpringBootApplication注解,这个注解内部就有@ComponentScan注解,默认是扫描启动类包下所有的包,所以我们要达到定制化一定不要放在他能扫描到的地方。

cloud中文官网:https://www.springcloud.cc/spring-cloud-greenwich.html#netflix-ribbon-starter

3、配置文件用法

如下配置就可以取代@RibbonClient注解,注意一定要使用全类名,没有@RibbonClient级别高:

CLOUD-PAYMENT-SERVICE:
  ribbon:
    NFLoadBalancerRuleClassName: com.gzl.myrule.MySelfRule
@RibbonClient(name = "CLOUD-PAYMENT-SERVICE",configuration=MySelfRule.class)

4、修改默认算法

我们还是基于这个Eureka项目示例来进行演示修改默认算法::https:

1. 修改cloud-consumer-order80(ribbon一定是用在消费端,A调用B服务的接口,那么A就是消费端)

新建package,只要不和启动类在同一个包下即可!

@Configuration
public class MySelfRule {
    @Bean
    public IRule myRule() {
        //定义为随机
        return new RandomRule();
    }
}

2、主启动类添加@RibbonClient(这个是一定要指定的,不然他不知道我们要修改算法,假如配置文件方式指定了就不需要添加这个注解了)

在启动该微服务的时候就能去加载我们的自定义Ribbon配置类,从而使配置生效:

@RibbonClient(name = "CLOUD-PAYMENT-SERVICE",configuration= MySelfRule.class)

3、测试

这时候再测试访问消费者接口,会发现已经不再是轮询访问了,成为了随机访问!

访问:http://localhost/consumer/payment/get/1

五、Ribbon原理

1、负载均衡算法

以轮询算法为例:rest接口第几次请求数 % 服务器集群总数量 = 实际调用服务器位置下标

每次服务重启动后rest接口计数从1开始。

为什么要获取服务器下标呢?

算法完全是基于DiscoveryClient来从注册中心获取到注册的服务列表,获取的是个List<ServiceInstance>,有了下标,有了服务list集合,那我们自然就知道要访问哪个服务了。

import org.springframework.cloud.client.discovery.DiscoveryClient;
@Resource
private DiscoveryClient discoveryClient;

List<ServiceInstance> instances = discoveryClient.getInstances("CLOUD-PAYMENT-SERVICE");
        for (ServiceInstance element : instances) {
            System.out.println(element.getServiceId() + "\t" + element.getHost() + "\t" + element.getPort() + "\t"
                    + element.getUri());
        }

输出的结果:

如: List [0] instances = 127.0.0.1:8002
   List [1] instances = 127.0.0.1:8001

8001+ 8002 组合成为集群,它们共计2台机器,集群总数为2, 按照轮询算法原理:

2、源码分析

我看的Cloud的Hoxton.SR1版本,版本之间源码略有不同,但是大概思路差不多。

ribbon实现的关键点是为ribbon定制的RestTemplate,ribbon利用了RestTemplate的拦截器机制,在拦截器中实现ribbon的负载均衡。负载均衡的基本实现就是利用applicationName从服务注册中心获取可用的服务地址列表,然后通过一定算法负载,决定使用哪一个服务地址来进行http调用。

1.Ribbon的RestTemplate

RestTemplate中有一个属性是List<ClientHttpRequestInterceptor> interceptors,如果interceptors里面的拦截器数据不为空,在RestTemplate进行http请求时,这个请求就会被拦截器拦截进行,拦截器需要实现ClientHttpRequestInterceptor接口,接口就一个方法,需要实现以下方法:

也就是说拦截器需要完成http请求,并封装一个标准的response返回。

2.Ribbon中的拦截器

在Ribbon 中就是通过名字为LoadBalancerInterceptor的拦截器,注入到RestTemplate中,进行拦截请求,然后实现负载均衡调用的。

拦截器定义在:org.springframework.cloud.client.loadbalancer.LoadBalancerAutoConfiguration

这个类是在这个包下,并不在Ribbon的包下:

拦截器的定义与拦截器注入器的定义:下面的bean是拦截器注入器

3.Ribbon中的拦截器注入到RestTemplate

定义了拦截器,自然需要把拦截器注入到、RestTemplate才能生效,那么Ribbon中是如何实现的?上面说了拦截器的定义与拦截器注入器的定义,那么肯定会有个地方使用注入器来注入拦截器的。

还是在这个类当中:org.springframework.cloud.client.loadbalancer.LoadBalancerAutoConfiguration

遍历context中的注入器,调用注入方法,为目标RestTemplate注入拦截器,注入器和拦截器都是我们定义好的。

还有关键的一点是:需要注入拦截器的目标restTemplates到底是哪一些?因为RestTemplate实例在context中可能存在多个,不可能所有的都注入拦截器,这里就是@LoadBalanced注解发挥作用的时候了。

4.LoadBalanced注解

严格上来说,这个注解是spring cloud实现的,不是ribbon中的,它的作用是在依赖注入时,只注入实例化时被@LoadBalanced修饰的实例。

例如我们定义Ribbon的RestTemplate的时候是这样的:

@Bean
@LoadBalanced
public RestTemplate rebbionRestTemplate(){
    return new RestTemplate();
}

因此才能为我们定义的RestTemplate注入拦截器。

那么@LoadBalanced是如何实现这个功能的呢?其实都是spring的原生操作,@LoadBalance的源码如下

@Qualifier注解很重要:

@Autowired默认是根据类型进行注入的,因此如果有多个类型一样的Bean候选者,则需要限定其中一个候选者,否则将抛出异常,@Qualifier限定描述符除了能根据名字进行注入,更能进行更细粒度的控制如何选择候选者

@LoadBalanced很明显,‘继承’了注解@QualifierRestTemplates通过@Autowired注入,同时被@LoadBalanced修饰,所以只会注入@LoadBalanced修饰的RestTemplate,也就是我们的目标RestTemplate

5.拦截器逻辑实现

这里使用的是LoadBalancerInterceptor拦截器

当我们每通过RestTemplate调用一个接口的时候都会经过这个拦截器,通过拦截器当中的intercept方法,然后执行excute的时候,打断点会发现他会执行到这:

在这里就是根据对应的负载均衡算法选择对应的服务,RibbonLoadBalancerClient就是Ribbon当中的类了。由此可以看出框架有时候就是这样,来回套用,cloud对外提供API,然后组件进行真正的实现,假如感觉ribbon满足不了我们,我们完全可以按照cloud的API来开发新的负载均衡框架,进行无缝替换。

(1)getLoadBalancer(serviceId):可以理解为,再第一次请求到来时,创建好IClientConfig(客户端配置)、ServerList(从配置文件中加载的服务列表)、IRule(负载均衡策略)与IPing (探活策略)等Bean,是一种懒加载的模式。

(2)getServer(loadBalancer, hint):则是通过以上的负载均衡策略与探活策略,从服务列表中选择合适的服务实例(详细代码在ZoneAwareLoadBalancer的chooseServer方法中)。Server对象包含ip、端口与协议等信息。

重点看getServer方法,看看是如何选择服务的

默认就是ZoneAvoidanceRule负载均衡算法!

ZoneAvoidanceRule:继承PredicateBasedRule,他是没有重写choose方法的,这时候就进入到了父类的choose方法。

public Server choose(Object key) {
   ILoadBalancer lb = getLoadBalancer();
	// 这里就完成了服务的选择
	// 而且我们可以看到,这里的lb.getAllServers 说明ILoadBalancer直接存储或者间接存储了服务列表
   Optional<Server> server = getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key);
   if (server.isPresent()) {
       return server.get();
   } else {
       return null;
   }       
}

从上面可以看到chooseRoundRobinAfterFiltering 这个方法的意思就是在过滤之后,选择轮询的负载均衡方式。

lb.getAllServers是获取该服务的所有服务实例。

由此可见chooseRoundRobinAfterFiltering就是选择的关键点了。

public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) {
    // 过滤掉不复合条件的服务实例
	List<Server> eligible = getEligibleServers(servers, loadBalancerKey);
     if (eligible.size() == 0) {
         return Optional.absent();
     }
	// incrementAndGetModulo 这个就是轮询的关键计算
     return Optional.of(eligible.get(incrementAndGetModulo(eligible.size())));
 }

其计算过程还是比较简单的,使用了AtomicInteger来计算访问的次数,cas+自旋锁来控制多线程的安全性!

private final AtomicInteger nextIndex = new AtomicInteger();

六、手写负载均衡器

1.RestTemplate去掉注解@LoadBalanced

2.LoadBalancer接口(在80消费者添加)

这个接口相当于是传进去多个服务,然后根据实现类,来选择出一个服务,至于是轮询还是随机,我们自己实现。

import org.springframework.cloud.client.ServiceInstance;

import java.util.List;

public interface LoadBalancer {
    ServiceInstance instances(List<ServiceInstance> serviceInstances);
}

3.定义实现类(在80消费者添加)

@Component
public class MyLB implements LoadBalancer {

    private AtomicInteger atomicInteger = new AtomicInteger(0);

    // 获取服务的下标
    public final int getAndIncrement() {
        int current;
        int next;
        do {
            current = this.atomicInteger.get();
            next = current >= 2147483647 ? 0 : current + 1;
        } while (!this.atomicInteger.compareAndSet(current, next));
        System.out.println("*****next: " + next);
        return next;
    }

    // 下标和服务数进行取模
    @Override
    public ServiceInstance instances(List<ServiceInstance> serviceInstances) {
        int index = getAndIncrement() % serviceInstances.size();
        return serviceInstances.get(index);
    }
}

4.调整8001服务和8002服务,这两个服务是提供者,新增一个接口,来进行测试使用!

@Value("${server.port}")
private String serverPort;

@GetMapping(value = "/payment/lb")
 public String getPaymentLB() {
     return serverPort;
 }

5.在消费者80端添加测试接口

@GetMapping("/consumer/payment/lb")
public String getPaymentLB() {
    // 这个是利用的cloud自带的DiscoveryClient,假如cloud项目使用了注册中心都可以通过服务名称来获取对应的服务信息
    List<ServiceInstance> instances = discoveryClient.getInstances("CLOUD-PAYMENT-SERVICE");

    if (instances == null || instances.size() <= 0) {
        return null;
    }
    // 获取要访问的服务信息
    ServiceInstance serviceInstance = loadBalancer.instances(instances);
    URI uri = serviceInstance.getUri();

    return restTemplate.getForObject(uri + "/payment/lb", String.class);
}

6.测试

http://localhost/consumer/payment/lb

这样我们就成功自己实现了一个负载均衡!

加载全部内容

相关教程
猜你喜欢
用户评论