亲宝软件园·资讯

展开

SpringBoot集成Caffeine

码哥字节 人气:0

引言

使用缓存的目的就是提高性能,今天码哥带大家实践运用 spring-boot-starter-cache 抽象的缓存组件去集成本地缓存性能之王 Caffeine。

大家需要注意的是:in-memeory 缓存只适合在单体应用,不适合与分布式环境。

分布式环境的情况下需要将缓存修改同步到每个节点,需要一个同步机制保证每个节点缓存数据最终一致。

Spring Cache 是什么

不使用 Spring Cache 抽象的缓存接口,我们需要根据不同的缓存框架去实现缓存,需要在对应的代码里面去对应缓存加载、删除、更新等。

比如查询我们使用旁路缓存策略:先从缓存中查询数据,如果查不到则从数据库查询并写到缓存中。

伪代码如下:

public User getUser(long userId) {
    // 从缓存查询
    User user = cache.get(userId);
    if (user != null) {
        return user;
    }
    // 从数据库加载
    User dbUser = loadDataFromDB(userId);
    if (dbUser != null) {
        // 设置到缓存中
        cache.put(userId, dbUser)
    }
    return dbUser;
}

我们需要写大量的这种繁琐代码,Spring Cache 则对缓存进行了抽象,提供了如下几个注解实现了缓存管理:

除此之外,抽象的 CacheManager 既能集成基于本地内存的单体应用,也能集成 EhCache、Redis 等缓存服务器。

最方便的是通过一些简单配置和注解就能接入不同的缓存框架,无需修改任何代码。

集成 Caffeine

码哥带大家使用注解方式完成缓存操作的方式来集成,完整的代码请访问 github:在 pom.xml 文件添加如下依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-cache</artifactId>
</dependency>
<dependency>
    <groupId>com.github.ben-manes.caffeine</groupId>
    <artifactId>caffeine</artifactId>
</dependency>

使用 JavaConfig 方式配置 CacheManager:

@Slf4j
@EnableCaching
@Configuration
public class CacheConfig {
    @Autowired
    @Qualifier("cacheExecutor")
    private Executor cacheExecutor;
    @Bean
    public Caffeine<Object, Object> caffeineCache() {
        return Caffeine.newBuilder()
                // 设置最后一次写入或访问后经过固定时间过期
                .expireAfterAccess(7, TimeUnit.DAYS)
                // 初始的缓存空间大小
                .initialCapacity(500)
                // 使用自定义线程池
                .executor(cacheExecutor)
                .removalListener(((key, value, cause) -> log.info("key:{} removed, removalCause:{}.", key, cause.name())))
                // 缓存的最大条数
                .maximumSize(1000);
    }
    @Bean
    public CacheManager cacheManager() {
        CaffeineCacheManager caffeineCacheManager = new CaffeineCacheManager();
        caffeineCacheManager.setCaffeine(caffeineCache());
        // 不缓存空值
        caffeineCacheManager.setAllowNullValues(false);
        return caffeineCacheManager;
    }
}

准备工作搞定,接下来就是如何使用了。

@Slf4j
@Service
public class AddressService {
    public static final String CACHE_NAME = "caffeine:address";
    private static final AtomicLong ID_CREATOR = new AtomicLong(0);
    private Map&lt;Long, AddressDTO&gt; addressMap;
    public AddressService() {
        addressMap = new ConcurrentHashMap&lt;&gt;();
        addressMap.put(ID_CREATOR.incrementAndGet(), AddressDTO.builder().customerId(ID_CREATOR.get()).address("地址1").build());
        addressMap.put(ID_CREATOR.incrementAndGet(), AddressDTO.builder().customerId(ID_CREATOR.get()).address("地址2").build());
        addressMap.put(ID_CREATOR.incrementAndGet(), AddressDTO.builder().customerId(ID_CREATOR.get()).address("地址3").build());
    }
    @Cacheable(cacheNames = {CACHE_NAME}, key = "#customerId")
    public AddressDTO getAddress(long customerId) {
        log.info("customerId:{} 没有走缓存,开始从数据库查询", customerId);
        return addressMap.get(customerId);
    }
    @CachePut(cacheNames = {CACHE_NAME}, key = "#result.customerId")
    public AddressDTO create(String address) {
        long customerId = ID_CREATOR.incrementAndGet();
        AddressDTO addressDTO = AddressDTO.builder().customerId(customerId).address(address).build();
        addressMap.put(customerId, addressDTO);
        return addressDTO;
    }
    @CachePut(cacheNames = {CACHE_NAME}, key = "#result.customerId")
    public AddressDTO update(Long customerId, String address) {
        AddressDTO addressDTO = addressMap.get(customerId);
        if (addressDTO == null) {
            throw new RuntimeException("没有 customerId = " + customerId + "的地址");
        }
        addressDTO.setAddress(address);
        return addressDTO;
    }
    @CacheEvict(cacheNames = {CACHE_NAME}, key = "#customerId")
    public boolean delete(long customerId) {
        log.info("缓存 {} 被删除", customerId);
        return true;
    }
}

使用 CacheName 隔离不同业务场景的缓存,每个 Cache 内部持有一个 map 结构存储数据,key 可用使用 Spring 的 Spel 表达式。

单元测试走起:

@RunWith(SpringRunner.class)
@SpringBootTest(classes = CaffeineApplication.class)
@Slf4j
public class CaffeineApplicationTests {
    @Autowired
    private AddressService addressService;
    @Autowired
    private CacheManager cacheManager;
    @Test
    public void testCache() {
        // 插入缓存 和数据库
        AddressDTO newInsert = addressService.create("南山大道");
        // 要走缓存
        AddressDTO address = addressService.getAddress(newInsert.getCustomerId());
        long customerId = 2;
        // 第一次未命中缓存,打印 customerId:{} 没有走缓存,开始从数据库查询
        AddressDTO address2 = addressService.getAddress(customerId);
        // 命中缓存
        AddressDTO cacheAddress2 = addressService.getAddress(customerId);
        // 更新数据库和缓存
        addressService.update(customerId, "地址 2 被修改");
        // 更新后查询,依然命中缓存
        AddressDTO hitCache2 = addressService.getAddress(customerId);
        Assert.assertEquals(hitCache2.getAddress(), "地址 2 被修改");
        // 删除缓存
        addressService.delete(customerId);
        // 未命中缓存, 从数据库读取
        AddressDTO hit = addressService.getAddress(customerId);
        System.out.println(hit.getCustomerId());
    }
}

大家发现没,只需要在对应的方法上加上注解,就能愉快的使用缓存了。需要注意的是, 设置的 cacheNames 一定要对应,每个业务场景使用对应的 cacheNames。

另外 key 可以使用 spel 表达式,大家重点可以关注 @CachePut(cacheNames = {CACHE_NAME}, key = "#result.customerId"),result 表示接口返回结果,Spring 提供了几个元数据直接使用。

名称地点描述例子
methodName根对象被调用的方法的名称#root.methodName
method根对象被调用的方法#root.method.name
target根对象被调用的目标对象#root.target
targetClass根对象被调用的目标的类#root.targetClass
args根对象用于调用目标的参数(作为数组)#root.args[0]
caches根对象运行当前方法的缓存集合#root.caches[0].name
参数名称评估上下文任何方法参数的名称。如果名称不可用(可能是由于没有调试信息),则参数名称也可在#a<#arg> where#arg代表参数索引(从 开始0)下获得。#iban或#a0(您也可以使用#p0或#p<#arg>表示法作为别名)。
result评估上下文方法调用的结果(要缓存的值)。仅在unless 表达式、cache put表达式(计算key)或cache evict 表达式(when beforeInvocationis false)中可用。对于支持的包装器(例如 Optional),#result指的是实际对象,而不是包装器。#result

核心原理

Java Caching定义了5个核心接口,分别是 CachingProvider, CacheManager, Cache, Entry 和 Expiry。

核心类图:

CacheAspectSupport:缓存切面支持类,是CacheInterceptor 的父类,封装了所有的缓存操作的主体逻辑。

主要流程如下:

今天就到这了,分享一些工作小技巧给大家,后面码哥会分享如何接入 Redis ,并且带大家实现一个基于 Sping Boot 实现一个 Caffeine 作为一级缓存、Redis 作为二级缓存的分布式二级缓存框架。

我们下期见,大家可以在评论区叫我靓仔么?不叫也行,点赞分享也是鼓励。

参考资料

[1]https:

[2]https://docs.spring.io/spring...

加载全部内容

相关教程
猜你喜欢
用户评论