亲宝软件园·资讯

展开

Pandas查询选取数据

Wangsh@ 人气:0

一,Pandas查询数据的几种方法

  1. df[]按行列选取,这种情况一次只能选取行或者列
  2. df.loc方法,根据行、列的标签值查询
  3. df.iloc方法,根据行、列的数字位置查询,根据索引定位
  4. df.query方法

二,Pandas使用df.loc查询数据的方法

  1. 使用单个label值查询数据
  2. 使用值列表批量查询
  3. 使用数值区间进行范围查询
  4. 使用条件表达式查询
  5. 调用函数查询

注意

以上查询方法,既适用于行,也适用于列

########################################## 

 df[]

>>> df=pd.DataFrame(np.random.rand(25).reshape([5,5]),index=['A','B','C','D','E'],columns=['c1','c2','c3','c4','c5'])
>>> df
         c1        c2        c3        c4        c5
A  0.499404  0.082137  0.472568  0.649200  0.121681
B  0.564688  0.102398  0.374904  0.091373  0.495510
C  0.319272  0.720225  0.979103  0.910206  0.766642
D  0.478346  0.311616  0.466326  0.045612  0.258015
E  0.421653  0.577140  0.103048  0.235219  0.550336

##########################################  

 #获取c1,c2两列

df[['c1','c2']]

>>> df[['c1','c2']]
         c1        c2
A  0.499404  0.082137
B  0.564688  0.102398
C  0.319272  0.720225
D  0.478346  0.311616
E  0.421653  0.577140

##########################################  

#获取c1列

df.c1

>>> df.c1
A    0.499404
B    0.564688
C    0.319272
D    0.478346
E    0.421653
Name: c1, dtype: float64

##########################################  

#获取索引为A-C行数据

df['A':'C']

>>> df['A':'C']
         c1        c2        c3        c4        c5
A  0.499404  0.082137  0.472568  0.649200  0.121681
B  0.564688  0.102398  0.374904  0.091373  0.495510
C  0.319272  0.720225  0.979103  0.910206  0.766642

##########################################  

#获取2-3行数据

df[1:3]

>>> df[1:3]
         c1        c2        c3        c4        c5
B  0.564688  0.102398  0.374904  0.091373  0.495510
C  0.319272  0.720225  0.979103  0.910206  0.766642

##########################################  

df.loc方法查询

1、使用数值区间进行范围查询

有点类似list的切片

>>> df.loc['A':'D',:]
         c1        c2        c3        c4        c5
A  0.499404  0.082137  0.472568  0.649200  0.121681
B  0.564688  0.102398  0.374904  0.091373  0.495510
C  0.319272  0.720225  0.979103  0.910206  0.766642
D  0.478346  0.311616  0.466326  0.045612  0.258015

##########################################  

2、单个label值查询

类似坐标查询

>>> df.loc['A','c2']
0.08213716245372071

##########################################  

3、使用列表批量查询

>>> df.loc[['A','B','D'],['c1','c3']]
         c1        c3
A  0.499404  0.472568
B  0.564688  0.374904
D  0.478346  0.466326

##########################################  

4、使用条件表达式查询

>>> df.loc[df['c2']>0.5,:]
         c1        c2        c3        c4        c5
C  0.319272  0.720225  0.979103  0.910206  0.766642
E  0.421653  0.577140  0.103048  0.235219  0.550336
>>> df[(df['c2']>0.2) & (df['c3'] < 0.8)]
         c1        c2        c3        c4        c5
D  0.478346  0.311616  0.466326  0.045612  0.258015
E  0.421653  0.577140  0.103048  0.235219  0.550336

##########################################  

5、使用函数查询

def query_my_data(df):
    return ((df['c3']>0.2) & (df["c4"]<0.8))
            
df.loc[query_my_data, :]
            c1        c2            c3            c4            c5
    B    0.845310    0.545040    0.946026    0.106405    0.984376
    C    0.844622    0.947104    0.878854    0.377638    0.175846
    E    0.139952    0.420424    0.364295    0.012773    0.307853
 

##########################################  

df.iloc方法查询

同df.loc类似,根据索引定位

#提取2-3行,1-2列数据

df.iloc[1:3,0:2]

>>> df.iloc[1:3,0:2]
         c1        c2
B  0.564688  0.102398
C  0.319272  0.720225

##########################################  

#提取第二第三行,第4列数据

df.iloc[[1,2],[3]]

         c4
B  0.091373
C  0.910206

##########################################  

#提取指定位置单个数值

df.iloc[3,4]

>>> df.iloc[3,4]
0.2580148841605816

总结

加载全部内容

相关教程
猜你喜欢
用户评论