亲宝软件园·资讯

展开

C语言数据结构堆排序

_奇奇 人气:0

“大弦嘈嘈如急雨,小弦切切如私语”“嘈嘈切切错杂弹,大珠小珠落玉盘”

C语言朱武大战数据结构专栏

C语言植物大战数据结构快速排序图文示例

C语言植物大战数据结构希尔排序算法

C语言植物大战数据结构二叉树递归

TOP.堆排序前言

什么是堆排序?假如给你下面的代码让你完善堆排序,你会怎么写?你会怎么排?

void HeapSort(int* a, int n)
{
}
int main()
{
	int arr[] = { 4,2,7,8,5,1,0,6 };
	int sz = sizeof(arr) / sizoef(arr[0]);
	HeapSort(arr, sz);
	return 0;
}

堆排序就是利用堆这个数据结构,对一组数据进行排序。

所以说,堆排序整体分两步完成。

第一步,建堆

第二步,进行排序

注意:以下代码针对的是对一组 数据 排升序

一、向下调整堆排序

对的,向下调整方法,是最优秀的堆排序。

不是太想介绍那种向上调整拉胯的堆排序,我们经常用的是这种优秀的向下排序。

二者区别在于建堆的方法不同。一个是向下建堆O(N),一个是向上建堆O(N*logN)。

具体证明用到了高中 简单的数列公式。

1.向下调整建堆

建堆的技巧

向下建堆也有两种情况。

1.建大堆

2.建小堆

那么到底建大堆还是小堆呢?

解释:建堆在于你是想要排升序,还是排降序。假如建的大堆,因为堆顶的数是最大的,在我们对堆 向下调整排序时,这时候每次都需要把最大的交换到堆底。所以导致最后堆的顺序是升序。

建大堆前

建大堆后

向下调整排序后

此时数组就有序了。

结论:实质是在数组上建堆。排升序建大堆,排降序建小堆。

建堆思路代码

思路:

因为叶子结点本身就是一个大堆,所以从最后一个叶子结点的父亲结点开始进行向下建堆。

这样就能够保证每次建的堆都是大堆。

注意:

1.注意循环结束条件,和if语句里的边界问题child + 1 < n

2.注意完全二叉树父子关系公式

#include <stdio.h>
//交换
void swap(int* x, int* y)
{
	int t = 0;
	t = *x;
	*x = *y;
	*y = t;
}
//向下调整
void AdjustDown(int* a, int n, int root)
{
	int parent = root;
	int child = parent * 2 + 1;
	while (child  < n)
	{
		//每次调整都需要从左右两边选出孩子最大的那个
		//假设坐孩子较大,选出左右孩子大的那个
		if (child + 1 < n && a[child + 1] > a[child])
		{
			++child;
		}
		//开始调整。
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		//不满足就跳出,开始下次for循环调整。
		else
		{
			break;
		}
	}
}
void HeapSort(int* a, int n)
{
	//向下调整建堆
	int i = 0;
	for (i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
}
int main()
{
	int arr[] = { 4,2,7,8,5,1,0,6 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	HeapSort(arr, sz);
	return 0;
}

2.向下调整排序

调整思路

1.从堆底依次 和 堆顶的数据进行交换。

2.对交换后的 堆顶的值 进行向下调整。向下调整时请无视交换到堆底那个最大的值。

3.继续循环第一步和第二步,直到到正数第二个数结束。

排序整体代码

void swap(int* x, int* y)
{
	int t = 0;
	t = *x;
	*x = *y;
	*y = t;
}
void AdjustDown(int* a, int n, int root)
{
	int parent = root;
	int child = parent * 2 + 1;
	while (child  < n)
	{
		//每次调整都需要从左右两边选出孩子最大的那个
		//假设坐孩子较大,选出左右孩子大的那个
		if (child + 1 < n && a[child + 1] > a[child])
		{
			++child;
		}
		//开始调整。
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		//不满足就跳出,开始下次for循环调整。
		else
		{
			break;
		}
	}
}
void HeapSort(int* a, int n)
{
	//向下调整建堆
	int i = 0;
	for (i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	//向下调整排序
	int end = 0;
	for (end = n-1; end > 0; end--)
	{
		swap(&a[0], &a[end]);
		//向下调整时无视最大的那个值,所以end是n-1。
		AdjustDown(a, end, 0);
	}
}
int main()
{
	int arr[] = { 4,2,7,8,5,1,0,6 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	HeapSort(arr, sz);
	return 0;
}

3.时间复杂度(难点)

向下建堆O(N)

//向下调整建堆
	int i = 0;
	for (i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}

很多人的误区在于他的时间复杂度是N*Log2N。这是错误的。

时间复杂度的计算是看思想,而不是看循环猜测。

当是满二叉树,在最坏的情况下,除了最后一层,上面所有层都需要进行向下调整。

最坏情况下的调整次数 = 每层数据个数 * 向下调整次数

第一层向下调整次数是h-1,节点个数是21-1

第二层向下调整次数是h-2, 节点个数是22-1

第h-1层向下调整次数是1,节点个数是2h-1-1

所以总的调整次数为n:n = 20*(h-1) + 21 *(h-2)+… + 2h-1-1 *(1)

根据高中错位相减得到 n = 1−h+21+22+…+2h−2+2h−1

由等比数列前n项和得到 n = 2h−h−1

由二叉树性质N=2h−1和 h = log2(N+1) 得到 n=N−log2​(N+1)

大O渐进表示法为n= O(N)

向下调整(N*LogN)

需要向下调整n-1次。每次需要调整的高度为LogN,N为节点的个数,因为节点个数每次少一个。

所以n-1次调整总次数 = log2+log3+…+log(n-1)+log(n)≈log(n!)

由数学知识得log(n!)和nlog(n)是同阶函数。

所以向下调整排序时间复杂度为N*LogN

所以堆排序时间复杂度为:N + N*LogN

大O渐进表示法为:O(N*LogN)

总结:堆排序时间复杂度 O(N*LogN)

二、向上调整堆排序

向上调整排序和向下调整排序的唯一不同在于建堆的不同,导致二者的建堆的时间复杂度略微不同。

1.向上调整建堆

向上调整建堆时间复杂度为N*LogN.具体原因还需要经过残酷的数学计算。孩子不会啊。但是经过网上查阅资料我又找到了计算方法。如图。

根据二叉树的性质:h = Log2(N+1)

可以将T(h) = 2h * (h-2) + 2换为:

所以总体来说就是向上调整的建堆时间复杂度为O(N * LogN).

2.建堆代码

思路:从第二个元素开始,只关注前两个元素建堆,然后再依次增加元素建堆,使它一直为堆。

向上调整建堆虽然时间复杂度略高,但是代码相对于向下调整简单一点点。

void AdjustUp(int* a, int child)
{
	//先把父亲节点表示出来。
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		//比较孩子和父亲,开始向上调整。
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

加载全部内容

相关教程
猜你喜欢
用户评论