Matplotlib 绘制小红花
夏小悠 人气:0前言:
在上篇博文中使用了matplotlib
绘制了3D小红花,本篇博客主要介绍一下3D小红花的绘制原理。
1. 极坐标系
对于极坐标系中的一点 P ,我们可以用极径 r 和极角 θ 来表示,记为点 P ( r , θ ) ,
使用matplotlib绘制极坐标系:
import matplotlib.pyplot as plt import numpy as np if __name__ == '__main__': # 极径 r = np.arange(10) # 角度 theta = 0.5 * np.pi * r fig = plt.figure() plt.polar(theta, r, c='r', marker='o', ms=3, ls='-', lw=1) # plt.savefig('img/polar1.png') plt.show()
使用matplotlib绘制极坐标散点图:
import matplotlib.pyplot as plt import numpy as np if __name__ == '__main__': r = np.linspace(0, 10, num=10) theta = 2 * np.pi * r area = 3 * r ** 2 ax = plt.subplot(111, projection='polar') ax.scatter(theta, r, c=theta, s=area, cmap='hsv', alpha=0.75) # plt.savefig('img/polar2.png') plt.show()
有关matplotlib
极坐标的参数更多介绍,可参阅官网手册。
2. 极坐标系花瓣
绘制r = s i n ( θ ) r=sin(\theta)r=sin(θ)
在极坐标系下的图像:
import matplotlib.pyplot as plt import numpy as np if __name__ == '__main__': fig = plt.figure() ax = plt.subplot(111, projection='polar') ax.set_rgrids(radii=np.linspace(-1, 1, num=5), labels='') theta = np.linspace(0, 2 * np.pi, num=200) r = np.sin(theta) ax.plot(theta, r) # plt.savefig('img/polar3.png') plt.show()
以 2 π 为一个周期,增加图像的旋转周期:
r = np.sin(2 * theta)
继续增加图像的旋转周期:
r = np.sin(3 * theta) r = np.sin(4 * theta)
然后我们可以通过调整极径系数和角度系数来调整图像:
import matplotlib.pyplot as plt import numpy as np if __name__ == '__main__': fig = plt.figure() ax = plt.subplot(111, projection='polar') ax.set_rgrids(radii=np.linspace(-1, 1, num=5), labels='') theta = np.linspace(0, 2 * np.pi, num=200) r1 = np.sin(4 * (theta + np.pi / 8)) r2 = 0.5 * np.sin(5 * theta) r3 = 2 * np.sin(6 * (theta + np.pi / 12)) ax.plot(theta, r1) ax.plot(theta, r2) ax.plot(theta, r3) # plt.savefig('img/polar4.png') plt.show()
3. 三维花瓣
现在可以将花瓣放置在三维空间上了,根据花瓣的生成规律,其花瓣外边缘线在一条旋转内缩的曲线上,这条曲线的极径 r 随着角度的增大逐渐变小,其高度 h 逐渐变大。
其函数图像如下:
这样定义就满足前面对花瓣外边缘曲线的假设了,即 r 递减, h 递增。
现在将其放在三维空间中:
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D if __name__ == '__main__': fig = plt.figure() ax = Axes3D(fig) # plt.axis('off') x = np.linspace(0, 1, num=30) theta = np.linspace(0, 2 * np.pi, num=1200) theta = 30 * theta x, theta = np.meshgrid(x, theta) # f is a decreasing function of theta f = 0.5 * np.pi * np.exp(-theta / 50) r = x * np.sin(f) h = x * np.cos(f) # 极坐标转笛卡尔坐标 X = r * np.cos(theta) Y = r * np.sin(theta) ax = ax.plot_surface(X, Y, h, rstride=1, cstride=1, cmap=plt.cm.cool) # plt.savefig('img/polar5.png') plt.show()
笛卡尔坐标系(Cartesian coordinate system)
,即直角坐标系。
然而,上述的表达仍然没有得到花瓣的细节,因此我们需要在此基础之上进行处理,以得到花瓣形状。因此设计了一个花瓣函数:
其是一个以 2 π 为周期的周期函数,其值域为[ 0.5 , 1.0 ],图像如下图所示:
再次绘制:
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D if __name__ == '__main__': fig = plt.figure() ax = Axes3D(fig) # plt.axis('off') x = np.linspace(0, 1, num=30) theta = np.linspace(0, 2 * np.pi, num=1200) theta = 30 * theta x, theta = np.meshgrid(x, theta) # f is a decreasing function of theta f = 0.5 * np.pi * np.exp(-theta / 50) # 通过改变函数周期来改变花瓣的形状 # 改变值域也可以改变花瓣形状 # u is a periodic function u = 1 - (1 - np.absolute(np.sin(3.3 * theta / 2))) / 2 r = x * u * np.sin(f) h = x * u * np.cos(f) # 极坐标转笛卡尔坐标 X = r * np.cos(theta) Y = r * np.sin(theta) ax = ax.plot_surface(X, Y, h, rstride=1, cstride=1, cmap=plt.cm.RdPu_r) # plt.savefig('img/polar6.png') plt.show()
4. 花瓣微调
为了使花瓣更加真实,使花瓣的形态向下凹,因此需要对花瓣的形状进行微调,这里添加一个修正项和一个噪声扰动,修正函数图像为:
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D if __name__ == '__main__': fig = plt.figure() ax = Axes3D(fig) # plt.axis('off') x = np.linspace(0, 1, num=30) theta = np.linspace(0, 2 * np.pi, num=1200) theta = 30 * theta x, theta = np.meshgrid(x, theta) # f is a decreasing function of theta f = 0.5 * np.pi * np.exp(-theta / 50) noise = np.sin(theta) / 30 # u is a periodic function u = 1 - (1 - np.absolute(np.sin(3.3 * theta / 2))) / 2 + noise # y is a correction function y = 2 * (x ** 2 - x) ** 2 * np.sin(f) r = u * (x * np.sin(f) + y * np.cos(f)) h = u * (x * np.cos(f) - y * np.sin(f)) X = r * np.cos(theta) Y = r * np.sin(theta) ax = ax.plot_surface(X, Y, h, rstride=1, cstride=1, cmap=plt.cm.RdPu_r) # plt.savefig('img/polar7.png') plt.show()
修正前后图像区别对比如下:
5. 结束语
3D花的绘制主要原理是极坐标,通过正弦/余弦函数进行旋转变形构造,参数略微变化就会出现不同的花朵,有趣!
加载全部内容