OpenCV图像通道操作 OpenCV中图像通道操作的深入讲解
半壕春水 人气:0想了解OpenCV中图像通道操作的深入讲解的相关内容吗,半壕春水在本文为您仔细讲解OpenCV图像通道操作的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:opencv,图像通道操作,opencv图像处理,opencv,管道,下面大家一起来学习吧。
1.基本介绍
在OpenCV中,图像通道是按照 B 通道→G 通道→R 通道的顺序存储的。在图像处理过程中,可以根据需要对通道进行拆分和合并。
2.通道拆分
对于RGB图像,可以索引的方式或者函数的方式分别拆分出其RGB通道。
b = img[ : , : , 0 ] g = img[ : , : , 1 ] r = img[ : , : , 2 ]
2.1通过索引拆分
import cv2 lena=cv2.imread("lena_color.jpg") cv2.imshow("lena彩色原图",lena) b=lena[:,:,0] # 获取图像的B通道 g=lena[:,:,1] # 获取图像的G通道 r=lena[:,:,2] # 获取图像的R通道 cv2.imshow("B通道",b) cv2.imshow("G通道",g) cv2.imshow("R通道",r) cv2.waitKey() cv2.destroyAllWindows()
2.2通过函数拆分
函数 cv2.split()
能够拆分彩色图像的通道。
语句b,g,r=cv2.split(img)
可以获得彩色图像的B 通道图像 b、G 通道图像 g 和 R 通道图像 r。与下面语句是等价的
b=cv2.split(a)[0] g=cv2.split(a)[1] r=cv2.split(a)[2]
如下程序的运行结果与通过索引拆分是一样的
import cv2 lena=cv2.imread("lena_color.jpg") cv2.imshow("lena彩色原图",lena) b,g,r=cv2.split(lena) cv2.imshow("B通道",b) cv2.imshow("G通道",g) cv2.imshow("R通道",r) cv2.waitKey() cv2.destroyAllWindows()
3.通道合并
通道合并是通道拆分的逆过程,可以通过合并通道将三个通道的灰度图像合成一幅彩色图像。函数 cv2.merge()
可以实现图像通道的合并,例如有 B 通道图像 b、G 通道图像 g 和 R 通道图像 r,使用函数 cv2.merge()
可以将这三个通道合并为一幅 BGR 的三通道彩色图像。实现的语句为:bgr=cv2.merge([b,g,r])
import cv2 lena=cv2.imread("lena_color.jpg") b,g,r=cv2.split(lena) # 对lena彩色原图进行通道拆分 bgr=cv2.merge([b,g,r]) # 对通道按照BGR的顺序合并生成图像bgr brg=cv2.merge([b,r,g]) # 对通道按照BRG的顺序合并生成图像brg rgb=cv2.merge([r,g,b]) # 对通道按照RGB的顺序合并生成图像rgb cv2.imshow("bgr",bgr) cv2.imshow("brg",brg) cv2.imshow("rgb",rgb) cv2.waitKey() cv2.destroyAllWindows()
从输出结果可以知道:改变通道顺序后,图像显示效果会发生变化
总结
加载全部内容