NLP(二十七)开放领域的三元组抽取的一次尝试
山阴少年 人气:0
当我写下这篇文章的时候,我的内心是激动的,这是因为,自从去年6月份写了文章[利用关系抽取构建知识图谱的一次尝试](https://www.cnblogs.com/jclian91/p/11107323.html) 后,我就一直在试图寻找一种在开放领域能够进行三元组抽取的办法,也有很多读者问过我这方面的问题,今天,笔者将给出答复,虽然不是正确答案(现在也没有正确答案),但至少,我写下了自己的答案。
离我想出这个抽取系统虽然才过去不久,但我的心情,已经由开始的激动狂喜,转化为后来的平淡,直到现在的不满。事实证明,开放领域的三元组抽取实在太难,以笔者个人的努力和智商,实在没法给出完美的答案,所以,文章的题目是尝试,仅仅作为尝试,并不能解决好这个问题。但,我还是想写些什么,希望能够对笔者有一点点启发,同时,也是对自己近半年的探寻做一个总结。
关于三元组抽取的基本介绍和常用办法,笔者之前已经在不少文章中描述过,这里不再过多介绍,有兴趣的读者可以参考文章[利用关系抽取构建知识图谱的一次尝试](https://www.cnblogs.com/jclian91/p/11107323.html) 和 [NLP(二十六)限定领域的三元组抽取的一次尝试](https://blog.csdn.net/jclian91/articlehttps://img.qb5200.com/download-x/details/104874488) 。本文将会介绍笔者在开放领域做三元组抽取的一次尝试。
本项目已经开源至Github,文章最后会给出相应的网址。本项目的项目结构如下:
![项目结构](https://img-blog.csdnimg.cn/20200320153327338.png)
本项目一共分为四部分,主要模块介绍如下:
- extract_example: 利用训练好的模型对基本小说和新闻进行三元组抽取,形成知识图谱例子;
- sequence_labeling:训练标注,对标注的实体数据进行序列标注算法训练;
- spo_tagging_platform:标注平台,标注subject,predicate和object以及三元组是否有效;
- text_classification:文本分类,用于判别抽取的三元组是否有效。
本项目的抽取系统流程图如下:
![抽取系统流程图](https://img-blog.csdnimg.cn/20200320162852951.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2pjbGlhbjkx,size_16,color_FFFFFF,t_70)
接下来笔者将逐一介绍。
### 标注平台
笔者用tornado搭建了简易的标注平台,在标注页面中,标注人员需要输入标注的句子(句子级别的抽取)以及subject,predicate,object,点击“显示SPO”,将有效的三元组标注为1,无效的三元组标注为0。之所以采取这种标注方法,是因为我们可以在句子中标注subject,predicate,object,这些标注的实体就会形成可能的三元组组合,再利用0,1来标注这种三元组是否有效,这样就能做到在开放领域进行三元组抽取。
一个简单的标注例子如下:
![标注例子](https://img-blog.csdnimg.cn/20200320170755153.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2pjbGlhbjkx,size_16,color_FFFFFF,t_70)
再对以上的标注结果做一些说明,我们的标注是以句子为单位,进行句子级别的标注,不同要素在标注的时候加#区分,标注了两个subject,1个predicate(共用)和2个object,其中predidate是这些subject和object公用的,所以只需要标注一次。这样,点击“显示SPO”,一共会显示4个三元组,s,p,o用#隔开,0,1表示是否是有效三元组,默认为0。
笔者利用空余时间,一共标注了3200多个样本,对于序列标注来说,就是3200多个样本,对于文本分类来说,就是9000多个样本了。
### 序列标注
对于上述的标注例子,会形成如下的标注序列:
```
美 B-SUBJ
国 I-SUBJ
疾 I-SUBJ
控 I-SUBJ
中 I-SUBJ
心 I-SUBJ
主 B-PRED
任 I-PRED
雷 B-OBJ
德 I-OBJ
菲 I-OBJ
尔 I-OBJ
德 I-OBJ
( O
左 O
圈 O
) O
和 O
美 B-SUBJ
国 I-SUBJ
国 I-SUBJ
立 I-SUBJ
卫 I-SUBJ
生 I-SUBJ
研 I-SUBJ
究 I-SUBJ
院 I-SUBJ
过 I-SUBJ
敏 I-SUBJ
和 I-SUBJ
传 I-SUBJ
染 I-SUBJ
病 I-SUBJ
研 I-SUBJ
究 I-SUBJ
所 I-SUBJ
主 B-PRED
任 I-PRED
福 B-OBJ
西 I-OBJ
( O
右 O
圈 O
) O
```
将数据集分为训练集和测试集,比例为8:2.采用经典的深度学习模型ALBERT+Bi-LSTM+CRF进行实体识别,设置最大文本长度为128,训练100个epoch。关于该模型的介绍,可以参考文章[NLP(二十五)实现ALBERT+Bi-LSTM+CRF模型](https://blog.csdn.net/jclian91/articlehttps://img.qb5200.com/download-x/details/104826655) 。
在测试集上的训练结果如下:
```
accuracy: 93.69%; precision: 76.26%; recall: 82.33%; FB1: 79.18
OBJ: precision: 80.47%; recall: 88.81%; FB1: 84.44 927
PRED: precision: 76.89%; recall: 83.69%; FB1: 80.14 1021
SUBJ: precision: 71.72%; recall: 75.32%; FB1: 73.48 983
```
在测试集上的总体F1值接近80%。
### 文本分类
关于文本分类,需要多做一些说明。
虽然本文的题目是关于在开发领域的三元组抽取的尝试,但实际我在标注的时候,还是更多地标注人物头衔,人物关系,公司与人的关系,影视剧主演、导演信息等。形成的有效的文本分类的样本为9000多个,一共有关系1365个,数量最多的前20个关系如下图:
![数量最多的20个关系](https://img-blog.csdnimg.cn/20200320172641894.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2pjbGlhbjkx,size_16,color_FFFFFF,t_70)
以上述的标注数据为例,形成的标注数据如下:
```
美国疾控中心#主任#雷德菲尔德#1#美国疾控中心主任雷德菲尔德(左圈)和美国国立卫生研究院过敏和传染病研究所主任福西(右圈)
美国疾控中心#主任#福西#0#美国疾控中心主任雷德菲尔德(左圈)和美国国立卫生研究院过敏和传染病研究所主任福西(右圈)
美国国立卫生研究院过敏和传染病研究所#主任#雷德菲尔德#0#美国疾控中心主任雷德菲尔德(左圈)和美国国立卫生研究院过敏和传染病研究所主任福西(右圈)
美国国立卫生研究院过敏和传染病研究所#主任#福西#1#美国疾控中心主任雷德菲尔德(左圈)和美国国立卫生研究院过敏和传染病研究所主任福西(右圈)
```
在实际模型训练的时候,会将原文中的subject用S*len(subject)代替,predicate用P,object用O。
将数据集分为训练集和测试集,比例为8:2。采用经典的深度学习模型ALBERT+Bi-GRU+ATT+FC,设置文本的最大长度为为128,训练30个epoch,采用early stopping机制,训练过程的loss和acc图像如下:
![训练过程的loss和acc图像](https://img-blog.csdnimg.cn/20200320173129694.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2pjbGlhbjkx,size_16,color_FFFFFF,t_70)
最终在测试集上的accuracy约为96%。
### 新数据进行三元组抽取
上述的模型训练完毕后,我们就可以将其封装成HTTP服务。对于新输入的句子,我们先利用序列标注模型预测出其中的subject,predicate和object,组合成三元组与句子的拼接,输入到文本分类模型,判别该三元组是否有效,0为无效,1为有效。
从网上找几个例子,预测的结果如下:
![例子1](https://img-blog.csdnimg.cn/2020032017361981.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2pjbGlhbjkx,size_16,color_FFFFFF,t_70)
![例子2](https://img-blog.csdnimg.cn/20200320173633503.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2pjbGlhbjkx,size_16,color_FFFFFF,t_70)
![例子3](https://img-blog.csdnimg.cn/20200320173652878.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2pjbGlhbjkx,size_16,color_FFFFFF,t_70)
`extract_example`目录中为抽取的效果,包括几本小说和一些新闻上的效果,关于这方面的演示,可以参考另一个项目:[https://github.com/percent4/knowledge_graph_demo](https://github.com/percent4/knowledge_graph_demo) 。也可以参考文章[知识图谱构建举例](https://blog.csdn.net/jclian91/articlehttps://img.qb5200.com/download-x/details/104685424) 中给出的几个知识图谱的建构的例子。
### 总结
本文写的过程较为简单,也没有代码,这是因为笔者在之前的文章中做了大量的铺垫,主要是集中在模型方面。况且,这个项目比较大,也不适合在这里详细讲述,笔者只在这里给出思路和大概的处理流程,具体的实现代码可以参考下方的Github地址。
在实际的抽取过程中,一些句子也存在抽取出大量无用的三元组的情况,导致召回率高,这是因为本项目针对的是开放领域的三元组抽取,因此效果比不会有想象中的那么好,提升抽取效果的办法如下:
- 增加数据标注量,目前序列标注算法的样本仅3200多个;
- 模型方面:现在是pipeline形式,各自的效果还行,但总体上不如Joint形式好;
- 对于自己想抽的其他三元组的情形,建议增加这方面的标注;
- 文本预测耗时长(该问题已经解决)。
本项目作为笔者在开放领域的三元组抽取的一次尝试,在此之前关于这方面的文章或者项目还很少,因此可以说是探索阶段。
源码和数据已经在Github项目中给出,网址为 [https://github.com/percent4/spo_extract_platform](https://github.com/percent4/spo_extract_platform) 。
本人的微信公众号为`Python爬虫与算法`,欢迎关注~
### 参考文献
1. 利用关系抽取构建知识图谱的一次尝试: https://www.cnblogs.com/jclian91/p/11107323.html
2. NLP(二十六)限定领域的三元组抽取的一次尝试: https://blog.csdn.net/jclian91/articlehttps://img.qb5200.com/download-x/details/104874488
3. NLP(二十五)实现ALBERT+Bi-LSTM+CRF模型: https://blog.csdn.net/jclian91/articlehttps://img.qb5200.com/download-x/details/104826655
4. 知识图谱构建举例: https://blog.csdn.net/jclian91/articlehttps://img.qb5200.com/download-x/details/104685424
5. NLP(二十一)人物关系抽取的一次实战:https://blog.csdn.net/jclian91/articlehttps://img.qb5200.com/download-x/details/104380371
6. 《知识图谱 方法、实践与应用》 王昊奋、漆桂林、陈华钧著,中国工信出版集团、电子工业出版社出版。
加载全部内容