亲宝软件园·资讯

展开

pytorch训练时的显存占用递增的问题解决

来包番茄沙司 人气:0

遇到的问题:

在pytorch训练过程中突然out of memory。

解决方法:

1. 测试的时候爆显存有可能是忘记设置no_grad

加入 with torch.no_grad()

model.eval()
with torch.no_grad():
        for idx, (data, target) in enumerate(data_loader):
            if args.gpu != -1:
                data, target = data.to(args.device), target.to(args.device)
            log_probs = net_g(data)
            probs.append(log_probs)
            
            # sum up batch loss
            test_loss += F.cross_entropy(log_probs, target, reduction='sum').item()
            # get the index of the max log-probability
            y_pred = log_probs.data.max(1, keepdim=True)[1]
            correct += y_pred.eq(target.data.view_as(y_pred)).long().cpu().sum()

2. loss.item()

写成loss_train = loss_train + loss.item(),不能直接写loss_train = loss_train + loss

3. 在代码中添加以下两行:

torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True

4. del操作后再加上torch.cuda.empty_cache()

单独使用del、torch.cuda.empty_cache()效果都不明显,因为empty_cache()不会释放还被占用的内存。
所以这里使用了del让对应数据成为“没标签”的垃圾,之后这些垃圾所占的空间就会被empty_cache()回收。

"""添加了最后两行,img和segm是图像和标签输入,很明显通过.cuda()已经是被存在在显存里了;
   outputs是模型的输出,模型在显存里当然其输出也在显存里;loss是通过在显存里的segm和
   outputs算出来的,其也在显存里。这4个对象都是一次性的,使用后应及时把其从显存中清除
   (当然如果你显存够大也可以忽略)。"""
 
def train(model, data_loader, batch_size, optimizer):
    model.train()
    total_loss = 0
    accumulated_steps = 32 // batch_size
    optimizer.zero_grad()
    for idx, (img, segm) in enumerate(tqdm(data_loader)):
        img = img.cuda()
        segm = segm.cuda()
        outputs = model(img)
        loss = criterion(outputs, segm)
        (loss/accumulated_steps).backward()
        if (idx + 1 ) % accumulated_steps == 0:
            optimizer.step() 
            optimizer.zero_grad()
        total_loss += loss.item()
        
        # delete caches
        del img, segm, outputs, loss
        torch.cuda.empty_cache()

补充:Pytorch显存不断增长问题的解决思路

思路很简单,就是在代码的运行阶段输出显存占用量,观察在哪一块存在显存剧烈增加或者显存异常变化的情况。
但是在这个过程中要分级确认问题点,也即如果存在三个文件main.py、train.py、model.py。
在此种思路下,应该先在main.py中确定问题点,然后,从main.py中进入到train.py中,再次输出显存占用量,确定问题点在哪。
随后,再从train.py中的问题点,进入到model.py中,再次确认。
如果还有更深层次的调用,可以继续追溯下去。

例如:

main.py

def train(model,epochs,data):
    for e in range(epochs):
        print("1:{}".format(torch.cuda.memory_allocated(0)))
        train_epoch(model,data)
        print("2:{}".format(torch.cuda.memory_allocated(0)))
        eval(model,data)
        print("3:{}".format(torch.cuda.memory_allocated(0)))

若1与2之间显存增加极为剧烈,说明问题出在train_epoch中,进一步进入到train.py中。

train.py

def train_epoch(model,data):
    model.train()
    optim=torch.optimizer()
    for batch_data in data:
        print("1:{}".format(torch.cuda.memory_allocated(0)))
        output=model(batch_data)
        print("2:{}".format(torch.cuda.memory_allocated(0)))
        loss=loss(output,data.target)
        print("3:{}".format(torch.cuda.memory_allocated(0)))
        optim.zero_grad()
        print("4:{}".format(torch.cuda.memory_allocated(0)))
        loss.backward()
        print("5:{}".format(torch.cuda.memory_allocated(0)))
        utils.func(model)
        print("6:{}".format(torch.cuda.memory_allocated(0)))

如果在1,2之间,5,6之间同时出现显存增加异常的情况。此时需要使用控制变量法,例如我们先让5,6之间的代码失效,然后运行,观察是否仍然存在显存爆炸。如果没有,说明问题就出在5,6之间下一级的代码中。进入到下一级代码,进行调试:

utils.py

def func(model):
    print("1:{}".format(torch.cuda.memory_allocated(0)))
    a=f1(model)
    print("2:{}".format(torch.cuda.memory_allocated(0)))
    b=f2(a)
    print("3:{}".format(torch.cuda.memory_allocated(0)))
    c=f3(b)
    print("4:{}".format(torch.cuda.memory_allocated(0)))
    d=f4(c)
    print("5:{}".format(torch.cuda.memory_allocated(0)))

此时我们再展示另一种调试思路,先注释第5行之后的代码,观察显存是否存在先训爆炸,如果没有,则注释掉第7行之后的,直至确定哪一行的代码出现导致了显存爆炸。假设第9行起作用后,代码出现显存爆炸,说明问题出在第九行,显存爆炸的问题锁定。

参考链接:
http://www.zzvips.com/article/196059.html
https://blog.csdn.net/fish_like_apple/article/details/101448551

加载全部内容

相关教程
猜你喜欢
用户评论