亲宝软件园·资讯

展开

PyTorch基础之torch.nn.Conv2d中自定义权重问题

gy笨瓜 人气:0

torch.nn.Conv2d中自定义权重

torch.nn.Conv2d函数调用后会自动初始化weight和bias,本文主要涉及

如何自定义weight和bias为需要的数均分布类型:

torch.nn.Conv2d.weight.data以及torch.nn.Conv2d.bias.data为torch.tensor类型,因此只要对这两个属性进行操作即可。

【sample】

以input_channels = 2, output_channels = 1 为例

In [1]: import torch
In [2]: import torch.nn as nn

In [3]: conv = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=3)

# 此时weight以及bias已由nn.Conv2d初始化
conv.weight, conv.bias
Out[4]: 
(Parameter containing:
 tensor([[[[-0.0335,  0.0855, -0.0708],
           [-0.1672,  0.0902, -0.0077],
           [-0.0838, -0.1539, -0.0933]],
 
          [[-0.0496,  0.1807, -0.1477],
           [ 0.0397,  0.1963,  0.0932],
           [-0.2018, -0.0436,  0.1971]]]], requires_grad=True),
 Parameter containing:
 tensor([-0.1963], requires_grad=True))

# 手动设定
# conv.weight.data 以及 conv.bias.data属性为torch.tensor
# 因此只要获取conv.weight.data以及conv.bias.data属性,后续调用torch.tensor的不同方法即可进行修改
# 例如:全部修改为0
In [5]: conv.weight.data.zero_(), conv.bias.data.zero_()

In [6]: conv.weight, conv.bias
Out[6]: 
(Parameter containing:
 tensor([[[[0., 0., 0.],
           [0., 0., 0.],
           [0., 0., 0.]],
 
          [[0., 0., 0.],
           [0., 0., 0.],
           [0., 0., 0.]]]], requires_grad=True),
 Parameter containing:
 tensor([0.], requires_grad=True))

torch.nn.Conv2d()用法讲解

本文是深度学习框架 pytorch 的API : torch.nn.Conv2d() 函数的用法。介绍了 torch.nn.Conv2d() 各个参数的含义和用法,学会使用 pytorch 创建 卷积神经网络。

用法

Conv2d(in_channels, out_channels, kernel_size, stride=1,padding=0, dilation=1, groups=1,bias=True, padding_mode=‘zeros')

参数

如果我们设置的dilation=0的话,效果如图:(蓝色为输入,绿色为输出,卷积核为3 × 3)

如果设置的是dilation=1,那么效果如图:(蓝色为输入,绿色为输出,卷积核仍为 3 × 3 。)

但是这里卷积核点与输入之间距离为1的值相乘来得到输出。

举例来说:

比如 groups 为1,那么所有的输入都会连接到所有输出

当 groups 为 2的时候,相当于将输入分为两组,并排放置两层,每层看到一半的输入通道并产生一半的输出通道,并且两者都是串联在一起的。这也是参数字面的意思:“组” 的含义。

需要注意的是,in_channels 和 out_channels 必须都可以整除 groups,否则会报错(因为要分成这么多组啊,除不开你让人家程序怎么办?)

注意:参数 kernel_size,stride,padding,dilation 都可以是一个整数或者是一个元组,一个值的情况将会同时作用于高和宽 两个维度,两个值的元组情况代表分别作用于 维度。

相关形状

示例

入门学习者请不要过度关注某一些细节,建立一个简单的卷积层使用这个 API 其实很简单,大部分参数保持默认值就好,下面是简单的一个示例,创建一个简单的卷积神经网络:

class CNN(nn.Module):
    def __init__(self,in_channels:int,out_channels:int):
        """
        创建一个卷积神经网络
        网络只有两层
        :param in_channels: 输入通道数量
        :param out_channels: 输出通道数量
        """
        super(CNN).__init__()
        self.conv1=nn.Conv2d(in_channels,10,3,stride=1,padding=1)
        self.pool1=nn.MaxPool2d(kernel_size=2,stride=1)
        self.conv2=nn.Conv2d(10,out_channels,3,stride=1,padding=1)
        self.pool2=nn.MaxPool2d(kernel_size=2,stride=1)
    def forward(self,x):
        """
        前向传播函数
        :param x:  输入,tensor 类型
        :return: 返回结果
        """
        out=self.conv1(x)
        out=self.pool1(out)
        out=self.conv2(out)
        out=self.pool2(out)
        return out

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论