亲宝软件园·资讯

展开

Python关于维卷积的理解

静静喜欢大白 人气:0

关于维卷积的理解

功能

一维卷积一般用于处理文本数据,常用语自然语言处理中,输入一般是文本经过embedding的二维数据。

定义

tf.layers.conv1d(
inputs,
filters,
kernel_size,
strides=1,
padding='valid',
data_format='channels_last',
dilation_rate=1,
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=tf.zeros_initializer(),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
trainable=True,
name=None,
reuse=None
)

参数

重要参数介绍:

举例

代码

# coding: utf-8
import tensorflow as tf
 
num_filters = 2
kernel_size = 2
batch_size = 1
seq_length = 4
embedding_dim = 5
 
embedding_inputs = tf.constant(-1.0, shape=[batch_size, seq_length, embedding_dim], dtype=tf.float32)
 
with tf.name_scope("cnn"):
    conv = tf.layers.conv1d(embedding_inputs, num_filters, kernel_size, name='conv')
 
session = tf.Session()
session.run(tf.global_variables_initializer())
 
print (session.run(conv).shape)

输出为(1, 3, 2)

原理

首先,batch_size = 1即为一篇文本,seq_length = 4定义文本中有4个字(假设以字为单位),embedding_dim = 5定义一个字的向量长度为5,这里初始化每个字的向量都为[1, 1, 1, 1, 1]num_filters = 2定义有两个过滤器,kernel_size = 2定义每个卷积核的宽度为2,长度即为字向量长度5。

一个卷积核通过卷积操作之后得到(4-2+1)*1(seq_length - kernel_size + 1)即3*1的向量,一共有两个卷积核,所以卷积出来的数据维度(1, 3, 2)其中1指一篇文本。

图解

后续

经过卷积之后得到2个feature maps,分别经过pooling层之后,两个3*1的向量就变成两个1*1的常数,在把这两个1*1的常数拼接在一起变成2*1向量,之后就可以进行下一步比如全连接或者softmax操作了。

Python编写一维数组的卷积

之前在网上查阅关于数组卷积的代码时,发现有很多C++代码,但并没有多少关于python的代码,故在此将自己所编写的代码分享出来,希望能一起探讨研究。

实现思路如下

1、先将短数组反转

2、第一阶段,此时只有短数据的(前)部分元素与长数据相乘求和

3、第二阶段,此时短数据的所有元素与长数据相乘求和

4、第三阶段,此时短数据的(后)部分数据与长数据相乘求和

具体应用公式网上有很多,计算过程并不复杂,但比较麻烦的是关于循环变量的边界值的设置,稍有不慎就有可能超出索引值。我的办法是先在草稿纸上写两个数组,元素可以少取几个,然后写出具体卷积的过程数据,尤其不同阶段的过渡的位置,细心找出规律,然后就可以编写具体代码了。

代码入下:

    import matplotlib.pyplot as plt
    import numpy as np

#阶跃信号
def up(x):
    for i in range(len(x)):
        if x[i] < 0:
            y[i] = 0
        else:
            y[i] = 1
    return y

x= np.arange(-10,10,0.1)
y = np.zeros(len(x))

y = up(x)

plt.plot(y)
plt.show()



#高斯滤波器
def gauss(x,s):
    
    g=1/(((2*np.pi)**0.5)*s)*np.exp(-x**2/2/(s**2))
    return g

sample = np.arange(-10,10,1)
g = gauss(sample,10/3)

plt.plot(g)
plt.show()

#卷积一
f_1 = np.zeros(len(y)+len(g)-1)

#翻转
g = list(g)
g.reverse()

for i in range(len(f_1)):
    #长数据卷积部分短数据(前半部分)
    if i < (len(g)-1):
        for j in range(i+1):
            f_1[i] = y[j]*g[i-j]+f_1[i]
    #长数据卷积整个短数据
    elif i < (len(y)-1):
        for j in range(i-len(g)+1,i+1):
            f_1[i] = y[j]*g[i-j]+f_1[i]
    #长数据卷积部分短数据(后半部分)
    else:
        for j in range(i-len(g)+1,len(y)):
            f[i] = y[j]*g[i-j]+f[i]
           
               

            
#显示
plt.plot(f_1)
plt.show()


#卷积二

#存放卷积后的结果
f_2 = np.zeros(len(y)+len(g)-1)

#翻转
g = list(g)
g.reverse()

for i in range(len(f_2)):
    
    #根据卷积的不同阶段设置阈值
    t_left = i-len(g)+1
    t_right = i+1
    
    #卷积的前半部分j的初始值
    if t_left < 0:
        t_left = 0
    #卷积的后半部分j的上限
    if t_right > len(y):
        t_right = len(y)
    
    for j in range(t_left,t_right):

        f_2[i] = y[j]*g[i-j] + f_2[i]

#显示        
plt.plot(f_2)
plt.show()

两种设置阈值的方式,但思想都是一样的。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论