Python利用Pytorch实现绘制ROC与PR曲线图
Vertira 人气:0Pytorch 多分类模型绘制 ROC, PR 曲线(代码 亲测 可用)
ROC曲线
示例代码
import torch import torch.nn as nn import os import numpy as np from torchvision.datasets import ImageFolder from utils.transform import get_transform_for_test from senet.se_resnet import FineTuneSEResnet50 from scipy import interp import matplotlib.pyplot as plt from itertools import cycle from sklearn.metrics import roc_curve, auc, f1_score, precision_recall_curve, average_precision_score os.environ['CUDA_VISIBLE_DEVICES'] = "0" data_root = r'D:\TJU\GBDB\set113\set113_images\test1' # 测试集路径 test_weights_path = r"C:\Users\admin\Desktop\fsdownload\epoch_0278_top1_70.565_'checkpoint.pth.tar'" # 预训练模型参数 num_class = 113 # 类别数量 gpu = "cuda:0" # mean=[0.948078, 0.93855226, 0.9332005], var=[0.14589554, 0.17054074, 0.18254866] def test(model, test_path): # 加载测试集和预训练模型参数 test_dir = os.path.join(data_root, 'test_images') class_list = list(os.listdir(test_dir)) class_list.sort() transform_test = get_transform_for_test(mean=[0.948078, 0.93855226, 0.9332005], var=[0.14589554, 0.17054074, 0.18254866]) test_dataset = ImageFolder(test_dir, transform=transform_test) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=1, shuffle=False, drop_last=False, pin_memory=True, num_workers=1) checkpoint = torch.load(test_path) model.load_state_dict(checkpoint['state_dict']) model.eval() score_list = [] # 存储预测得分 label_list = [] # 存储真实标签 for i, (inputs, labels) in enumerate(test_loader): inputs = inputs.cuda() labels = labels.cuda() outputs = model(inputs) # prob_tmp = torch.nn.Softmax(dim=1)(outputs) # (batchsize, nclass) score_tmp = outputs # (batchsize, nclass) score_list.extend(score_tmp.detach().cpu().numpy()) label_list.extend(labels.cpu().numpy()) score_array = np.array(score_list) # 将label转换成onehot形式 label_tensor = torch.tensor(label_list) label_tensor = label_tensor.reshape((label_tensor.shape[0], 1)) label_onehot = torch.zeros(label_tensor.shape[0], num_class) label_onehot.scatter_(dim=1, index=label_tensor, value=1) label_onehot = np.array(label_onehot) print("score_array:", score_array.shape) # (batchsize, classnum) print("label_onehot:", label_onehot.shape) # torch.Size([batchsize, classnum]) # 调用sklearn库,计算每个类别对应的fpr和tpr fpr_dict = dict() tpr_dict = dict() roc_auc_dict = dict() for i in range(num_class): fpr_dict[i], tpr_dict[i], _ = roc_curve(label_onehot[:, i], score_array[:, i]) roc_auc_dict[i] = auc(fpr_dict[i], tpr_dict[i]) # micro fpr_dict["micro"], tpr_dict["micro"], _ = roc_curve(label_onehot.ravel(), score_array.ravel()) roc_auc_dict["micro"] = auc(fpr_dict["micro"], tpr_dict["micro"]) # macro # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr_dict[i] for i in range(num_class)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(num_class): mean_tpr += interp(all_fpr, fpr_dict[i], tpr_dict[i]) # Finally average it and compute AUC mean_tpr /= num_class fpr_dict["macro"] = all_fpr tpr_dict["macro"] = mean_tpr roc_auc_dict["macro"] = auc(fpr_dict["macro"], tpr_dict["macro"]) # 绘制所有类别平均的roc曲线 plt.figure() lw = 2 plt.plot(fpr_dict["micro"], tpr_dict["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc_dict["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr_dict["macro"], tpr_dict["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc_dict["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(num_class), colors): plt.plot(fpr_dict[i], tpr_dict[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc_dict[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.savefig('set113_roc.jpg') plt.show() if __name__ == '__main__': # 加载模型 seresnet = FineTuneSEResnet50(num_class=num_class) device = torch.device(gpu) seresnet = seresnet.to(device) test(seresnet, test_weights_path)
运行结果:
PR曲线
示例代码
import torch import torch.nn as nn import os import numpy as np from torchvision.datasets import ImageFolder from utils.transform import get_transform_for_test from senet.se_resnet import FineTuneSEResnet50 import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc, f1_score, precision_recall_curve, average_precision_score os.environ['CUDA_VISIBLE_DEVICES'] = "0" data_root = r'D:\TJU\GBDB\set113\set113_images\test1' # 测试集路径 test_weights_path = r"C:\Users\admin\Desktop\fsdownload\epoch_0278_top1_70.565_'checkpoint.pth.tar'" # 预训练模型参数 num_class = 113 # 类别数量 gpu = "cuda:0" # mean=[0.948078, 0.93855226, 0.9332005], var=[0.14589554, 0.17054074, 0.18254866] def test(model, test_path): # 加载测试集和预训练模型参数 test_dir = os.path.join(data_root, 'test_images') class_list = list(os.listdir(test_dir)) class_list.sort() transform_test = get_transform_for_test(mean=[0.948078, 0.93855226, 0.9332005], var=[0.14589554, 0.17054074, 0.18254866]) test_dataset = ImageFolder(test_dir, transform=transform_test) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=1, shuffle=False, drop_last=False, pin_memory=True, num_workers=1) checkpoint = torch.load(test_path) model.load_state_dict(checkpoint['state_dict']) model.eval() score_list = [] # 存储预测得分 label_list = [] # 存储真实标签 for i, (inputs, labels) in enumerate(test_loader): inputs = inputs.cuda() labels = labels.cuda() outputs = model(inputs) # prob_tmp = torch.nn.Softmax(dim=1)(outputs) # (batchsize, nclass) score_tmp = outputs # (batchsize, nclass) score_list.extend(score_tmp.detach().cpu().numpy()) label_list.extend(labels.cpu().numpy()) score_array = np.array(score_list) # 将label转换成onehot形式 label_tensor = torch.tensor(label_list) label_tensor = label_tensor.reshape((label_tensor.shape[0], 1)) label_onehot = torch.zeros(label_tensor.shape[0], num_class) label_onehot.scatter_(dim=1, index=label_tensor, value=1) label_onehot = np.array(label_onehot) print("score_array:", score_array.shape) # (batchsize, classnum) softmax print("label_onehot:", label_onehot.shape) # torch.Size([batchsize, classnum]) onehot # 调用sklearn库,计算每个类别对应的precision和recall precision_dict = dict() recall_dict = dict() average_precision_dict = dict() for i in range(num_class): precision_dict[i], recall_dict[i], _ = precision_recall_curve(label_onehot[:, i], score_array[:, i]) average_precision_dict[i] = average_precision_score(label_onehot[:, i], score_array[:, i]) print(precision_dict[i].shape, recall_dict[i].shape, average_precision_dict[i]) # micro precision_dict["micro"], recall_dict["micro"], _ = precision_recall_curve(label_onehot.ravel(), score_array.ravel()) average_precision_dict["micro"] = average_precision_score(label_onehot, score_array, average="micro") print('Average precision score, micro-averaged over all classes: {0:0.2f}'.format(average_precision_dict["micro"])) # 绘制所有类别平均的pr曲线 plt.figure() plt.step(recall_dict['micro'], precision_dict['micro'], where='post') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title( 'Average precision score, micro-averaged over all classes: AP={0:0.2f}' .format(average_precision_dict["micro"])) plt.savefig("set113_pr_curve.jpg") # plt.show() if __name__ == '__main__': # 加载模型 seresnet = FineTuneSEResnet50(num_class=num_class) device = torch.device(gpu) seresnet = seresnet.to(device) test(seresnet, test_weights_path)
运行结果:
加载全部内容