Python图像添加噪声
PKing666666 人气:0图像噪声是指存在于图像数据中的不必要的或多余的干扰信息。在噪声的概念中,通常采用信噪比(Signal-Noise Rate, SNR)衡量图像噪声。通俗的讲就是信号占多少,噪声占多少,SNR越小,噪声占比越大。
1.常见的图像噪声
(1)高斯噪声
高斯噪声Gaussian noise,是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声,通常是因为不良照明和高温引起的传感器噪声。
(2) 椒盐噪声
椒盐噪声salt-and-pepper noise,又称为脉冲噪声,它是一种随机出现的白点(盐噪声)或者黑点(椒噪声),通常是由图像传感器,传输信道,解压处理等产生的黑白相间的亮暗点噪声(椒-黑,盐-白)。常用的去除这种噪声的有效手段是使用中值滤波器。
2.生成图像噪声
在原始图像基础上加上噪声分量,即可生成图像噪声
(1)高斯噪声
def gaussian_noise(image, mean=0.1, sigma=0.1): """ 添加高斯噪声 :param image:原图 :param mean:均值 :param sigma:标准差 值越大,噪声越多 :return:噪声处理后的图片 """ image = np.asarray(image / 255, dtype=np.float32) # 图片灰度标准化 noise = np.random.normal(mean, sigma, image.shape).astype(dtype=np.float32) # 产生高斯噪声 output = image + noise # 将噪声和图片叠加 output = np.clip(output, 0, 1) output = np.uint8(output * 255) return output
(2) 椒盐噪声(速度慢)
常规的方法,需要遍历每个像素,添加椒盐噪声,该方法十分缓慢。Python语言十分不建议进行图像像素遍历操作,毕竟性能太差,速度太慢了(除非写成C/C++版本)。我们可以借助numpy的矩阵处理,实现快速的添加椒盐噪声。
def salt_pepper_noise(image: np.ndarray, prob=0.01): """ 添加椒盐噪声,该方法需要遍历每个像素,十分缓慢 :param image: :param prob: 噪声比例 :return: """ for i in range(image.shape[0]): for j in range(image.shape[1]): if random.random() < prob: image[i][j] = 0 if random.random() < 0.5 else 255 else: image[i][j] = image[i][j] return image
(3) 椒盐噪声(快速版)
我们可以借助numpy的矩阵处理,实现快速的添加椒盐噪声。基本思路:利用np.random.uniform生成0~1的均匀噪声( uniform distribution noise),然后将noise > prob的像素设置0或者255,这样通过矩阵的处理,可以快速添加椒盐噪声。
def fast_salt_pepper_noise(image: np.ndarray, prob=0.02): """ 随机生成一个0~1的mask,作为椒盐噪声 :param image:图像 :param prob: 椒盐噪声噪声比例 :return: """ image = add_uniform_noise(image, prob * 0.51, vaule=255) image = add_uniform_noise(image, prob * 0.5, vaule=0) return image def add_uniform_noise(image: np.ndarray, prob=0.05, vaule=255): """ 随机生成一个0~1的mask,作为椒盐噪声 :param image:图像 :param prob: 噪声比例 :param vaule: 噪声值 :return: """ h, w = image.shape[:2] noise = np.random.uniform(low=0.0, high=1.0, size=(h, w)).astype(dtype=np.float32) # 产生高斯噪声 mask = np.zeros(shape=(h, w), dtype=np.uint8) + vaule index = noise > prob mask = mask * (~index) output = image * index[:, :, np.newaxis] + mask[:, :, np.newaxis] output = np.clip(output, 0, 255) output = np.uint8(output) return output
3. Demo性能测试
需要用到pybaseutils工具,pip安装即可
# -*-coding: utf-8 -*- """ @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2022-07-27 15:23:24 @Brief : """ import cv2 import random import numpy as np from pybaseutils import time_utils @time_utils.performance("gaussian_noise") def gaussian_noise(image, mean=0.1, sigma=0.1): """ 添加高斯噪声 :param image:原图 :param mean:均值 :param sigma:标准差 值越大,噪声越多 :return:噪声处理后的图片 """ image = np.asarray(image / 255, dtype=np.float32) # 图片灰度标准化 noise = np.random.normal(mean, sigma, image.shape).astype(dtype=np.float32) # 产生高斯噪声 output = image + noise # 将噪声和图片叠加 output = np.clip(output, 0, 1) output = np.uint8(output * 255) return output @time_utils.performance("salt_pepper_noise") def salt_pepper_noise(image: np.ndarray, prob=0.01): """ 添加椒盐噪声,该方法需要遍历每个像素,十分缓慢 :param image: :param prob: 噪声比例 :return: """ for i in range(image.shape[0]): for j in range(image.shape[1]): if random.random() < prob: image[i][j] = 0 if random.random() < 0.5 else 255 else: image[i][j] = image[i][j] return image @time_utils.performance("fast_salt_pepper_noise") def fast_salt_pepper_noise(image: np.ndarray, prob=0.02): """ 随机生成一个0~1的mask,作为椒盐噪声 :param image:图像 :param prob: 椒盐噪声噪声比例 :return: """ image = add_uniform_noise(image, prob * 0.51, vaule=255) image = add_uniform_noise(image, prob * 0.5, vaule=0) return image def add_uniform_noise(image: np.ndarray, prob=0.05, vaule=255): """ 随机生成一个0~1的mask,作为椒盐噪声 :param image:图像 :param prob: 噪声比例 :param vaule: 噪声值 :return: """ h, w = image.shape[:2] noise = np.random.uniform(low=0.0, high=1.0, size=(h, w)).astype(dtype=np.float32) # 产生高斯噪声 mask = np.zeros(shape=(h, w), dtype=np.uint8) + vaule index = noise > prob mask = mask * (~index) output = image * index[:, :, np.newaxis] + mask[:, :, np.newaxis] output = np.clip(output, 0, 255) output = np.uint8(output) return output def cv_show_image(title, image, use_rgb=True, delay=0): """ 调用OpenCV显示RGB图片 :param title: 图像标题 :param image: 输入是否是RGB图像 :param use_rgb: True:输入image是RGB的图像, False:返输入image是BGR格式的图像 :return: """ img = image.copy() if img.shape[-1] == 3 and use_rgb: img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # 将BGR转为RGB # cv2.namedWindow(title, flags=cv2.WINDOW_AUTOSIZE) cv2.namedWindow(title, flags=cv2.WINDOW_NORMAL) cv2.imshow(title, img) cv2.waitKey(delay) return img if __name__ == "__main__": test_file = "test.png" image = cv2.imread(test_file) prob = 0.02 for i in range(10): out1 = gaussian_noise(image.copy()) out2 = salt_pepper_noise(image.copy(), prob=prob) out3 = fast_salt_pepper_noise(image.copy(), prob=prob) print("----" * 10) cv_show_image("image", image, use_rgb=False, delay=1) cv_show_image("gaussian_noise", out1, use_rgb=False, delay=1) cv_show_image("salt_pepper_noise", out2, use_rgb=False, delay=1) cv_show_image("fast_salt_pepper_noise", out3, use_rgb=False, delay=0)
循环机10次,salt_pepper_noise平均耗时125.49021ms,而fast_salt_pepper_noise平均耗时6.12011ms ,性能提高60倍左右,其生成的效果是基本一致的
call gaussian_noise elapsed: avg:19.42925ms total:194.29255ms count:10
call salt_pepper_noise elapsed: avg:125.49021ms total:1254.90212ms count:10
call fast_salt_pepper_noise elapsed: avg:6.12011ms total:61.20110ms count:10
原图
高斯噪声
salt_pepper_noise
fast_salt_pepper_noise
加载全部内容