pytorch神经网络
那小子真混蛋 人气:0一、基本
(1)利用pytorch建好的层进行搭建
import torch from torch import nn from torch.nn import functional as F #定义一个MLP网络 class MLP(nn.Module): ''' 网络里面主要是要定义__init__()、forward() ''' def __init__(self): ''' 这里定义网络有哪些层(比如nn.Linear,Conv2d……)[可不含激活函数] ''' super().__init__()#调用Module(父)初始化 self.hidden = nn.Linear(5,10) self.out = nn.Linear(10,2) def forward(self,x): ''' 这里定义前向传播的顺序,即__init__()中定义的层是按怎样的顺序进行连接以及传播的[在这里加上激活函数,以构造复杂函数,提高拟合能力] ''' return self.out(F.relu(self.hidden(x)))
上面的3层感知器可以用于解决一个简单的现实问题:给定5个特征,输出0-1类别概率值,是一个简单的2分类解决方案。
搭建一些简单的网络时,可以用nn.Sequence(层1,层2,……,层n)一步到位:
import torch from torch import nn from torch.nn import functional as F net = nn.Sequential(nn.Linear(5,10),nn.ReLU(),nn.Linear(10,2))
但是nn.Sequence仅局限于简单的网络搭建,而自定义网络可以实现复杂网络结构。
(1)中定义的MLP大致如上(5个输入->全连接->ReLU()->输出)
(2)使用网络
import torch from torch import nn from torch.nn import functional as F net = MLP() x = torch.randn((15,5))#15个samples,5个输入属性 out = net(x) #也可调用forward->"out = net.forward(x)" print(out) #print(out.shape)
tensor([[-0.0760, -0.1026], [-0.3277, -0.2332], [-0.0314, -0.1921], [ 0.0131, -0.1473], [-0.0650, -0.2310], [ 0.3009, -0.5510], [ 0.1491, -0.0928], [-0.1438, -0.1304], [-0.1945, -0.1944], [ 0.1088, -0.2249], [ 0.0016, -0.2334], [ 0.1401, -0.3709], [-0.1864, -0.1764], [ 0.0775, -0.0160], [ 0.0150, -0.3198]], grad_fn=<AddmmBackward>)
二、进阶
(1)构建较复杂的网络结构
a. Sequence、net套娃
import torch from torch import nn from torch.nn import functional as F class MLP2(nn.Module): def __init__(self): super().__init__() self.net = nn.Sequential(nn.Linear(5,10),nn.ReLU(),nn.Linear(10,5)) self.out = nn.Linear(5,4) def forward(self,x): return self.out(F.relu(self.net(x))) net2 = nn.Sequential(MLP2(),nn.ReLU(),nn.Linear(4,2)) net2.eval() # eval()等价print(net2)
Sequential( (0): MLP2( (net): Sequential( (0): Linear(in_features=5, out_features=10, bias=True) (1): ReLU() (2): Linear(in_features=10, out_features=5, bias=True) ) (out): Linear(in_features=5, out_features=4, bias=True) ) (1): ReLU() (2): Linear(in_features=4, out_features=2, bias=True) )
(2) 参数
a. 权重、偏差的访问
#访问权重和偏差 print(net2[2].weight)#注意weight是parameter类型,.data访问数值 print(net2[2].bias.data) #输出所有权重、偏差 print(*[(name,param) for name,param in net2[2].parameters()])
b. 不同网络之间共享参数
shared = nn.Linear(8,8) net = nn.Sequential(nn.Linear(5,8),nn.ReLU(),shared,nn.ReLU(),shared) print(net[2].weight.data[0]) net[2].weight.data[0][0] = 100 print(net[2].weight.data[0][0]) print(net[2].weight.data[0] == net[4].weight.data[0]) net.eval()
c. 参数初始化
def init_Linear(m): if type(m) == nn.Linear: nn.init.normal_(m.weight,mean = 0,std = 0.01) #将权重按照均值为0,标准差为0.01的正态分布进行初始化 nn.init.zeros_(m.bias) #将偏差置为0 def init_const(m): if type(m) == nn.Linear: nn.init.constant_(m.weight,42) #将权重全部置为42 def my_init(m): if type(m) == nn.Linear: ''' 对weight和bias自定义初始化 ''' pass #如何调用? net2.apply(init_const) #在net2中进行遍历,对每个Linear执行初始化
(3)自定义层(__init__()中可含输入输出层)
a. 不带输入输出的自定义层(输入输出一致,x数进,x数出,对每个值进行相同的操作,类似激活函数)
b. 带输入输出的自定义层
import torch from torch import nn from torch.nn import functional as F #a class decentralized(nn.Module): def __init__(self): super().__init__() def forward(self,x): return x-x.mean() #b class my_Linear(nn.Module): def __init__(self,dim_in,dim_out): super().__init__() self.weight = nn.Parameter(torch.ones(dim_in,dim_out)) #由于x行数为dim_out,列数为dim_in,要做乘法,权重行列互换 self.bias = nn.Parameter(torch.randn(dim_out)) def forward(self,x): return F.relu(torch.matmul(x,self.weight.data)+self.bias.data) tmp = my_Linear(5,3) print(tmp.weight)
(4)读写
#存取任意torch类型变量 x = torch.randn((20,20)) torch.save(x,'X') #存 y = torch.load('X') #取 #存储网络 torch.save(net2.state_dict(),'Past_parameters') #把所有参数全部存储 clone = nn.Sequential(MLP2(),nn.ReLU(),nn.Linear(4,2)) #存储时同时存储网络定义(网络结构) clone.load_state_dict(torch.load('Past_parameters')) clone.eval()
加载全部内容