python opencv提取光流
bug_Cat 人气:0前言
光流flow特征中包含了一个视频当中运动相关的信息,在视频动作定位当中光流特征使用的比较多,所以记录一下提取光流特征的方法。
使用的方法是TVL1方法,最终提取的光流图片还可以配合I3D模型进行特征的提取。光流的计算先需要将视频一帧一帧提取出来,然后再通过连续两帧之间的差异进行计算。
提取帧
提取视频的帧的算法如下:
其中video_list.txt
中写的是视频的名字,也就是告诉程序需要将那些视频提取帧:
videos
中存放视频,与video_list.txt
中写的视频名字对应
import cv2 import numpy as np import os import multiprocessing video_root = 'video_list.txt' root = 'videos' out_root = 'frames' suffix = '.jpg' def save_image(root, vid_name, num, image): file_name = os.path.join(root, vid_name, str(num) + suffix) # print(file_name) cv2.imwrite(file_name, image) def process(vid_path, preffix): videoCapture = cv2.VideoCapture(vid_path) i = 0 while True: success, frame = videoCapture.read() if success: i = i + 1 save_image(out_root, preffix, i, frame) # print('save image vid name: ', file_name, '; frame num: ', i) else: break def main(root): if not os.path.exists(out_root): os.mkdir(out_root) # path_list = os.listdir(root) path_list = [] #### 读取txt中视频信息 #### with open(video_root, 'r') as f: for id, line in enumerate(f): video_name = line.strip().split() path_list.append(video_name[0]) pool = multiprocessing.Pool(processes=4) for file_name in path_list: path = os.path.join(root, file_name) preffix = file_name.split('.')[0] dir_name = os.path.join(out_root, preffix) if not os.path.exists(dir_name): os.mkdir(dir_name) pool.apply_async(process, args=(path, preffix)) # process(path,preffix) pool.close() pool.join() if __name__ == '__main__': main(root) print("finish!!!!!!!!!!!!!!!!!!")
运行完这个程序就能将需要提取的视频帧放在frames
对应的目录下。
提取flow光流
提取光流使用了opencv模块,主要通过上面提取的视频帧进行计算,光流计算使用cpu资源比较多,所以会计算很长时间。
光流提取的代码如下:
import cv2 import os import numpy as np import glob import multiprocessing ###### 使用frames帧进行 flow光流计算 video_root = 'video_list.txt' root = 'frames' out_root = 'flow' def cal_for_frames(video_path): # print(video_path) frames = glob.glob(os.path.join(video_path, '*.jpg')) frames.sort() flow = [] prev = cv2.imread(frames[0]) prev = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY) for i, frame_curr in enumerate(frames[1:]): curr = cv2.imread(frame_curr) curr = cv2.cvtColor(curr, cv2.COLOR_BGR2GRAY) tmp_flow = compute_TVL1(prev, curr) flow.append(tmp_flow) prev = curr return flow def compute_TVL1(prev, curr, bound=15): TVL1 = cv2.optflow.DualTVL1OpticalFlow_create() flow = TVL1.calc(prev, curr, None) assert flow.dtype == np.float32 flow = (flow + bound) * (255.0 / (2 * bound)) flow = np.round(flow).astype(int) flow[flow >= 255] = 255 flow[flow <= 0] = 0 return flow def save_flow(video_flows, flow_path): if not os.path.exists(flow_path): os.mkdir(os.path.join(flow_path)) for i, flow in enumerate(video_flows): cv2.imwrite(os.path.join(flow_path, str(i) + '_x.jpg'), flow[:, :, 0]) cv2.imwrite(os.path.join(flow_path, str(i) + '_y.jpg'), flow[:, :, 1]) def process(video_path, flow_path): flow = cal_for_frames(video_path) save_flow(flow, flow_path) def extract_flow(root, out_root): if not os.path.exists(out_root): os.mkdir(out_root) # dir_list = os.listdir(root) dir_list = [] ### 读取txt中视频信息 with open(video_root, 'r') as f: for id, line in enumerate(f): video_name = line.strip().split() preffix = video_name[0].split('.')[0] dir_list.append(preffix) pool = multiprocessing.Pool(processes=4) for dir_name in dir_list: video_path = os.path.join(root, dir_name) flow_path = os.path.join(out_root, dir_name) # flow = cal_for_frames(video_path) # save_flow(flow,flow_path) # print('save flow data: ',flow_path) # process(video_path,flow_path) pool.apply_async(process, args=(video_path, flow_path)) pool.close() pool.join() if __name__ == '__main__': extract_flow(root, out_root) print("finish!!!!!!!!!!!!!!!!!!")
环境配置
提取光流时需要使用到cv2.optflow.DualTVL1OpticalFlow_create()
,这玩意安装有时候会有版本问题,所以安装的opencv-python和pencv-contrib-python最好版本相同
pip install opencv-python==4.1.2.30 pip install opencv-contrib-python==4.1.2.30
结果
最终flow光流图和提取的帧之间如下图所示,可以看到一些梳头发的动作变化。
总结
记录一下光流特征提取的算法,方便自己之后进行使用。
加载全部内容