python es
IT之一小佬 人气:0前言:
模拟学生成绩信息写入es数据库,包括姓名、性别、科目、成绩。
示例代码1:【一次性写入10000*1000条数据】 【本人亲测耗时5100秒】
from elasticsearch import Elasticsearch from elasticsearch import helpers import random import time es = Elasticsearch(hosts='http://127.0.0.1:9200') # print(es) names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十'] sexs = ['男', '女'] subjects = ['语文', '数学', '英语', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] datas = [] start = time.time() # 开始批量写入es数据库 # 批量写入数据 for j in range(1000): print(j) action = [ { "_index": "grade", "_type": "doc", "_id": i, "_source": { "id": i, "name": random.choice(names), "sex": random.choice(sexs), "subject": random.choice(subjects), "grade": random.choice(grades) } } for i in range(10000 * j, 10000 * j + 10000) ] helpers.bulk(es, action) end = time.time() print('花费时间:', end - start)
elasticsearch-head中显示:
示例代码2:【一次性写入10000*5000条数据】 【本人亲测耗时23000秒】
from elasticsearch import Elasticsearch from elasticsearch import helpers import random import time es = Elasticsearch(hosts='http://127.0.0.1:9200') # print(es) names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十'] sexs = ['男', '女'] subjects = ['语文', '数学', '英语', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] datas = [] start = time.time() # 开始批量写入es数据库 # 批量写入数据 for j in range(5000): print(j) action = [ { "_index": "grade3", "_type": "doc", "_id": i, "_source": { "id": i, "name": random.choice(names), "sex": random.choice(sexs), "subject": random.choice(subjects), "grade": random.choice(grades) } } for i in range(10000 * j, 10000 * j + 10000) ] helpers.bulk(es, action) end = time.time() print('花费时间:', end - start)
示例代码3:【一次性写入10000*9205条数据】 【耗时过长】
from elasticsearch import Elasticsearch from elasticsearch import helpers import random import time es = Elasticsearch(hosts='http://127.0.0.1:9200') names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十'] sexs = ['男', '女'] subjects = ['语文', '数学', '英语', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] datas = [] start = time.time() # 开始批量写入es数据库 # 批量写入数据 for j in range(9205): print(j) action = [ { "_index": "grade2", "_type": "doc", "_id": i, "_source": { "id": i, "name": random.choice(names), "sex": random.choice(sexs), "subject": random.choice(subjects), "grade": random.choice(grades) } } for i in range(10000*j, 10000*j+10000) ] helpers.bulk(es, action) end = time.time() print('花费时间:', end - start)
查询数据并计算各种方式的成绩总分。
示例代码4:【一次性获取所有的数据,在程序中分别计算所耗的时间】
from elasticsearch import Elasticsearch import time def search_data(es, size=10): query = { "query": { "match_all": {} } } res = es.search(index='grade', body=query, size=size) # print(res) return res if __name__ == '__main__': start = time.time() es = Elasticsearch(hosts='http://192.168.1.1:9200') # print(es) size = 10000 res = search_data(es, size) # print(type(res)) # total = res['hits']['total']['value'] # print(total) all_source = [] for i in range(size): source = res['hits']['hits'][i]['_source'] all_source.append(source) # print(source) # 统计查询出来的所有学生的所有课程的所有成绩的总成绩 start1 = time.time() all_grade = 0 for data in all_source: all_grade += int(data['grade']) print('所有学生总成绩之和:', all_grade) end1 = time.time() print("耗时:", end1 - start1) # 统计查询出来的每个学生的所有课程的所有成绩的总成绩 start2 = time.time() names1 = [] all_name_grade = {} for data in all_source: if data['name'] in names1: all_name_grade[data['name']] += data['grade'] else: names1.append(data['name']) all_name_grade[data['name']] = data['grade'] print(all_name_grade) end2 = time.time() print("耗时:", end2 - start2) # 统计查询出来的每个学生的每门课程的所有成绩的总成绩 start3 = time.time() names2 = [] subjects = [] all_name_all_subject_grade = {} for data in all_source: if data['name'] in names2: if all_name_all_subject_grade[data['name']].get(data['subject']): all_name_all_subject_grade[data['name']][data['subject']] += data['grade'] else: all_name_all_subject_grade[data['name']][data['subject']] = data['grade'] else: names2.append(data['name']) all_name_all_subject_grade[data['name']] = {} all_name_all_subject_grade[data['name']][data['subject']] = data['grade'] print(all_name_all_subject_grade) end3 = time.time() print("耗时:", end3 - start3) end = time.time() print('总耗时:', end - start)
运行结果:
在示例代码4中当把size由10000改为 2000000时,运行效果如下所示:
在项目中一般不用上述代码4中所统计成绩的方法,面对大量的数据是比较耗时的,要使用es中的聚合查询。计算数据中所有成绩之和。
示例代码5:【使用普通计算方法和聚类方法做对比验证】
from elasticsearch import Elasticsearch import time def search_data(es, size=10): query = { "query": { "match_all": {} } } res = es.search(index='grade', body=query, size=size) # print(res) return res def search_data2(es, size=10): query = { "aggs": { "all_grade": { "terms": { "field": "grade", "size": 1000 } } } } res = es.search(index='grade', body=query, size=size) # print(res) return res if __name__ == '__main__': start = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') size = 2000000 res = search_data(es, size) all_source = [] for i in range(size): source = res['hits']['hits'][i]['_source'] all_source.append(source) # print(source) # 统计查询出来的所有学生的所有课程的所有成绩的总成绩 start1 = time.time() all_grade = 0 for data in all_source: all_grade += int(data['grade']) print('200万数据所有学生总成绩之和:', all_grade) end1 = time.time() print("耗时:", end1 - start1) end = time.time() print('200万数据总耗时:', end - start) # 聚合操作 start_aggs = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') # size = 2000000 size = 0 res = search_data2(es, size) # print(res) aggs = res['aggregations']['all_grade']['buckets'] print(aggs) sum = 0 for agg in aggs: sum += (agg['key'] * agg['doc_count']) print('1000万数据总成绩之和:', sum) end_aggs = time.time() print('1000万数据总耗时:', end_aggs - start_aggs)
运行结果:
计算数据中每个同学的各科总成绩之和。
示例代码6: 【子聚合】【先分组,再计算】
from elasticsearch import Elasticsearch import time def search_data(es, size=10): query = { "query": { "match_all": {} } } res = es.search(index='grade', body=query, size=size) # print(res) return res def search_data2(es): query = { "size": 0, "aggs": { "all_names": { "terms": { "field": "name.keyword", "size": 10 }, "aggs": { "total_grade": { "sum": { "field": "grade" } } } } } } res = es.search(index='grade', body=query) # print(res) return res if __name__ == '__main__': start = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') size = 2000000 res = search_data(es, size) all_source = [] for i in range(size): source = res['hits']['hits'][i]['_source'] all_source.append(source) # print(source) # 统计查询出来的每个学生的所有课程的所有成绩的总成绩 start2 = time.time() names1 = [] all_name_grade = {} for data in all_source: if data['name'] in names1: all_name_grade[data['name']] += data['grade'] else: names1.append(data['name']) all_name_grade[data['name']] = data['grade'] print(all_name_grade) end2 = time.time() print("200万数据耗时:", end2 - start2) end = time.time() print('200万数据总耗时:', end - start) # 聚合操作 start_aggs = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') res = search_data2(es) # print(res) aggs = res['aggregations']['all_names']['buckets'] # print(aggs) dic = {} for agg in aggs: dic[agg['key']] = agg['total_grade']['value'] print('1000万数据:', dic) end_aggs = time.time() print('1000万数据总耗时:', end_aggs - start_aggs)
运行结果:
计算数据中每个同学的每科成绩之和。
示例代码7:
from elasticsearch import Elasticsearch import time def search_data(es, size=10): query = { "query": { "match_all": {} } } res = es.search(index='grade', body=query, size=size) # print(res) return res def search_data2(es): query = { "size": 0, "aggs": { "all_names": { "terms": { "field": "name.keyword", "size": 10 }, "aggs": { "all_subjects": { "terms": { "field": "subject.keyword", "size": 5 }, "aggs": { "total_grade": { "sum": { "field": "grade" } } } } } } } } res = es.search(index='grade', body=query) # print(res) return res if __name__ == '__main__': start = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') size = 2000000 res = search_data(es, size) all_source = [] for i in range(size): source = res['hits']['hits'][i]['_source'] all_source.append(source) # print(source) # 统计查询出来的每个学生的每门课程的所有成绩的总成绩 start3 = time.time() names2 = [] subjects = [] all_name_all_subject_grade = {} for data in all_source: if data['name'] in names2: if all_name_all_subject_grade[data['name']].get(data['subject']): all_name_all_subject_grade[data['name']][data['subject']] += data['grade'] else: all_name_all_subject_grade[data['name']][data['subject']] = data['grade'] else: names2.append(data['name']) all_name_all_subject_grade[data['name']] = {} all_name_all_subject_grade[data['name']][data['subject']] = data['grade'] print('200万数据:', all_name_all_subject_grade) end3 = time.time() print("耗时:", end3 - start3) end = time.time() print('200万数据总耗时:', end - start) # 聚合操作 start_aggs = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') res = search_data2(es) # print(res) aggs = res['aggregations']['all_names']['buckets'] # print(aggs) dic = {} for agg in aggs: dic[agg['key']] = {} for sub in agg['all_subjects']['buckets']: dic[agg['key']][sub['key']] = sub['total_grade']['value'] print('1000万数据:', dic) end_aggs = time.time() print('1000万数据总耗时:', end_aggs - start_aggs)
运行结果:
在上面查询计算示例代码中,当使用含有1000万数据的索引grade时,普通方法查询计算是比较耗时的,使用聚合查询能够大大节约大量时间。当面对9205万数据的索引grade2时,这时使用普通计算方法所消耗的时间太大了,在线上开发环境中是不可用的,所以必须使用聚合方法来计算。
示例代码8:
from elasticsearch import Elasticsearch import time def search_data(es): query = { "size": 0, "aggs": { "all_names": { "terms": { "field": "name.keyword", "size": 10 }, "aggs": { "all_subjects": { "terms": { "field": "subject.keyword", "size": 5 }, "aggs": { "total_grade": { "sum": { "field": "grade" } } } } } } } } res = es.search(index='grade2', body=query) # print(res) return res if __name__ == '__main__': # 聚合操作 start_aggs = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') res = search_data(es) # print(res) aggs = res['aggregations']['all_names']['buckets'] # print(aggs) dic = {} for agg in aggs: dic[agg['key']] = {} for sub in agg['all_subjects']['buckets']: dic[agg['key']][sub['key']] = sub['total_grade']['value'] print('9205万数据:', dic) end_aggs = time.time() print('9205万数据总耗时:', end_aggs - start_aggs)
运行结果:
注意:写查询语句时建议使用kibana去写,然后复制查询语句到代码中,kibana会提示查询语句。
加载全部内容