python wordcloud词云图
csdn来挖墙脚 人气:0前言
最近学到数据可视化到了词云图,正好学到爬虫,各种爬网站【实验名称】 爬取豆瓣电影《千与千寻》的评论并生成词云
- 利用爬虫获得电影评论的文本数据
- 处理文本数据生成词云图
第一步、准备数据
需要登录豆瓣网站才能够获得短评文本数据movie.douban.com/subject/129…
首先获取cookies,使用爬虫强大的firefox浏览器
将cookies数据复制到cookies.txt文件当中备用,
第二步、编写爬虫代码
#coding = utf-8 import requests import time import random from bs4 import BeautifulSoup abss = 'https://movie.douban.com/subject/1291561/comments' firstPag_url = 'https://movie.douban.com/subject/1291561/comments?start=20&limit=20&sort=new_score&status=P&percent_type=' url = 'https://movie.douban.com/subject/1291561/comments?start=0&limit=20&sort=new_score&status=P' header = { 'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:57.0) Gecko/20100101 Firefox/57.0', 'Connection':'keep-alive' } def get_data(html): # 获取所需要的页面数据 soup = BeautifulSoup(html, 'lxml') comment_list = soup.select('.comment > p') next_page = soup.select('#paginator > a')[2].get('href') date_nodes = soup.select('..comment-time') return comment_list, next_page, date_nodes def get_cookies(path): # 获取cookies f_cookies = open(path, 'r') cookies ={} for line in f_cookies.read().split(';'): # 将Cookies字符串其转换为字典 name ,value = line.strip().split('=', 1) cookies[name] = value return cookies if __name__ == '__main__': cookies = get_cookies('cookies.txt') # cookies文件保存的前面所述的cookies html = requests.get(firstPag_url, cookies=cookies,headers=header).content comment_list, next_page, date_nodes = get_data(html) #首先从第一个页面处理 soup = BeautifulSoup(html, 'lxml') while (next_page): #不断的处理接下来的页面 print(abss + next_page) html = requests.get(abss + next_page, cookies=cookies, headers=header).content comment_list, next_page, date_nodes = get_data(html) soup = BeautifulSoup(html, 'lxml') comment_list, next_page,date_nodes = get_data(html) with open("comments.txt", 'a', encoding='utf-8')as f: for ind in range(len(comment_list)): comment = comment_list[ind]; date = date_nodes[ind] comment = comment.get_text().strip().replace("\n", "") date= date.get_text().strip() f.writelines(date+u'\n' +comment + u'\n') time.sleep(1 + float(random.randint(1, 100)) / 20)
每一页都会有20条的短评,所以我们依次遍历每一页a
第二步,处理爬到的数据,在第一步当中已经将数据存档到了commit.txt文件当中,
# -*- coding:utf-8 -*- import jieba import matplotlib.pyplot as plt from wordcloud import WordCloud,ImageColorGenerator from scipy.misc import imread f_comment = open("comments.txt",'rb') words = [] for line in f_comment.readlines(): if(len(line))==12: continue A = jieba.cut(line) words.append(" ".join(A)) # 去除停用词 stopwords = [',','。','【','】', '”','“',',','《','》','!','、','?','.','…','1','2','3','4','5','[',']','(',')',' '] new_words = [] for sent in words : word_in = sent.split(' ') new_word_in = [] for word in word_in: if word in stopwords: continue else: new_word_in.append(word) new_sent = " ".join(new_word_in) new_words.append(new_sent) final_words = [] for sent in new_words: sent = sent.split(' ') final_words +=sent final_words_flt = [] for word in final_words: if word == ' ': continue else: final_words_flt.append(word) text = " ".join(final_words_flt)
处理完数据之后得到带有空格的高频词:
第三步、生成词云图
首先安装python的wordcloud库:
pip install wordcloud
在第二步text后面加上下面代码生成词云图
font = r'C:\Windows\Fonts\FZSTK.TTF' bk = imread("bg.png") # 设置背景文件 wc = WordCloud(collocations=False, mask = bk, font_path=font, width=1400, height=1400, margin=2).generate(text.lower()) image_colors = ImageColorGenerator(bk) # 读取背景文件色彩 plt.imshow(wc.recolor(color_func=image_colors)) plt.axis("off") plt.figure() plt.imshow(bk, cmap=plt.cm.gray) plt.axis("off") plt.show() wc.to_file('word_cloud1.png')
wordcloud作为对象是为小写,生成一个词云文件大概需要三步:
- 配置词云对象参数
- 加载词文本
- 输出词云文件(如果不加说明默认图片大小是400*200
方法 | 描述 |
---|---|
Wordcloud.generate(text) | 向wordcloud对象中加载文本text,例如:wordcloud.genertae(“python && wordclooud”) |
Wordcloud.to_file(filename) | 将词云输出为图像元件以.png .jpg格式保存,例wordcloud.to_file(“picture.png”) |
具体的方法上面
wordcloud做词频统计时分为下面几步:
- 分割:以空格分割单词
- 统计:单词出现的次数并过滤
- 字体:根据统计搭配相应的字号
布局:
最后我么可以看到短评当中处理过后的高频词
我们随便照一张图片读取背景颜色
最后生成的词云图就出来了:
加载全部内容