Golang并发工具库MapReduce
EvaCcino 人气:1环境
go version go1.16.4 windows/amd64 Intel(R) Core(TM) i7-7820HK CPU @ 2.90GHz 4核心8线程
项目需求
处理数个约5MB的小文件
从源目录读取文件并拷贝到目标目录
计算源文件MD5和目标文件MD5进行对比,如不相同则报错并终止程序执行
mapReduce使用说明
go get -u github.com/tal-tech/go-zero
需求实现
判断上下文是否中止 → 读取数据 → 写入数据 → 校验MD5
func fnBuilder(name string) func() error { return func() error { // 判断上下文是否终止 select { case <-ctx.Done(): return ctx.Err() default: } // 读取源数据 data, _err := os.ReadFile(filepath.Join(sourcePath, fileName)) // 计算源数据MD5 sourceMD5 := hash.Md5(data) // 获取名称 fields := strings.Split(d.Name(), "-") // 目标文件路径 distFilePath := filepath.Join(distPath, fileName) // 拷贝数据 os.WriteFile(distFilePath, data, 0600) // 校验数据 distData, _err := os.ReadFile(distFilePath) distMD5 := hash.Md5(distData) if !bytes.EqualFold(sourceMD5, distMD5) { return errors.New("md5校验失败") } return nil } }
业务逻辑
创建任务队列
type SourceMap = map[string]fs.DirEntry func CopyFileToDist(ctx context.Context, source SourceMap) (err error) { // 创建工作队列 work := make([]func() error, 0, len(source)) for _name := range source { // 创建任务 work = append(work, fnBuilder(_name)) } switch concurrency { default: // mapReduce case 1: // sync.waitGroup case 2: // 串行 } }
执行方式1:MapReduce
func() { if err = mr.Finish(work...); err != nil { return err } }
执行方式2:sync.WaitGroup
func() { var wg sync.WaitGroup wg.Add(len(work)) for k := range work { go func(index int) { defer wg.Done() if err = work[index](); err != nil { log.Errorln(err) return } }(k) } wg.Wait() }
执行方式3:串行
func() { for _, fn := range work { if err = fn(); err != nil { return err } } }
运行结果
MapReduce
耗时 109220900 ns
{"file":"D:/go/src/filenamesSorter/main.go:44","func":"main.init.0","level":"info","msg":"并发处理(0-mapReduce 1-Sync.WaitGroup 2-不并发) 0","time":"2021-06-02T13:32:05+08:00"} {"file":"D:/go/src/filenamesSorter/main.go:69","func":"main.main","level":"info","msg":"文件分类完毕","time":"2021-06-02T13:32:05+08:00","文件数":17,"耗时(ns)":109220900}
sync.WaitGroup
耗时 109798000 ns
{"file":"D:/go/src/filenamesSorter/main.go:44","func":"main.init.0","level":"info","msg":"并发处理(0-mapReduce 1-Sync.WaitGroup 2-不并发) 1","time":"2021-06-02T13:31:28+08:00"} {"file":"D:/go/src/filenamesSorter/main.go:69","func":"main.main","level":"info","msg":"文件分类完毕","time":"2021-06-02T13:31:28+08:00","文件数":17,"耗时(ns)":109798000}
串行
耗时 359307700 ns
{"file":"D:/go/src/filenamesSorter/main.go:44","func":"main.init.0","level":"info","msg":"并发处理(0-mapReduce 1-Sync.WaitGroup 2-不并发) 2","time":"2021-06-02T13:33:02+08:00"} {"file":"D:/go/src/filenamesSorter/main.go:69","func":"main.main","level":"info","msg":"文件分类完毕","time":"2021-06-02T13:33:02+08:00","文件数":17,"耗时(ns)":359307700}
结论
- 在不严格的情况下,执行效率方面可以认为 mapReduce ≈ sync.WaitGroup
- 易用性(包括并发和错误处理),mapReduce 完胜 sync.WaitGroup
- mapReduce好用
引申阅读
加载全部内容