多标签分类器pytorch源码
鬼道2022 人气:0多标签分类器
多标签分类任务与多分类任务有所不同,多分类任务是将一个实例分到某个类别中,多标签分类任务是将某个实例分到多个类别中。多标签分类任务有有两大特点:
- 类标数量不确定,有些样本可能只有一个类标,有些样本的类标可能高达几十甚至上百个
- 类标之间相互依赖,例如包含蓝天类标的样本很大概率上包含白云
如下图所示,即为一个多标签分类学习的一个例子,一张图片里有多个类别,房子,树,云等,深度学习模型需要将其一一分类识别出来。
多标签分类器损失函数
代码实现
针对图像的多标签分类器pytorch的简化代码实现如下所示。因为图像的多标签分类器的数据集比较难获取,所以可以通过对mnist数据集中的每个图片打上特定的多标签,例如类别1的多标签可以为[1,1,0,1,0,1,0,0,1],然后再利用重新打标后的数据集训练出一个mnist的多标签分类器。
from torchvision import datasets, transforms from torch.utils.data import DataLoader, Dataset import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import os class CNN(nn.Module): def __init__(self): super().__init__() self.Sq1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2), # (16, 28, 28) # output: (16, 28, 28) nn.ReLU(), nn.MaxPool2d(kernel_size=2), # (16, 14, 14) ) self.Sq2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=2), # (32, 14, 14) nn.ReLU(), nn.MaxPool2d(2), # (32, 7, 7) ) self.out = nn.Linear(32 * 7 * 7, 100) def forward(self, x): x = self.Sq1(x) x = self.Sq2(x) x = x.view(x.size(0), -1) x = self.out(x) ## Sigmoid activation output = F.sigmoid(x) # 1/(1+e**(-x)) return output def loss_fn(pred, target): return -(target * torch.log(pred) + (1 - target) * torch.log(1 - pred)).sum() def multilabel_generate(label): Y1 = F.one_hot(label, num_classes = 100) Y2 = F.one_hot(label+10, num_classes = 100) Y3 = F.one_hot(label+50, num_classes = 100) multilabel = Y1+Y2+Y3 return multilabel # def multilabel_generate(label): # multilabel_dict = {} # multi_list = [] # for i in range(label.shape[0]): # multi_list.append(multilabel_dict[label[i].item()]) # multilabel_tensor = torch.tensor(multi_list) # return multilabel def train(): epoches = 10 mnist_net = CNN() mnist_net.train() opitimizer = optim.SGD(mnist_net.parameters(), lr=0.002) mnist_train = datasets.MNIST("mnist-data", train=True, download=True, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(mnist_train, batch_size= 128, shuffle=True) for epoch in range(epoches): loss = 0 for batch_X, batch_Y in train_loader: opitimizer.zero_grad() outputs = mnist_net(batch_X) loss = loss_fn(outputs, multilabel_generate(batch_Y)) / batch_X.shape[0] loss.backward() opitimizer.step() print(loss) if __name__ == '__main__': train()
加载全部内容