亲宝软件园·资讯

展开

Pytorch建模流程

Python学习与数据挖掘 人气:0

本节内容学习帮助大家梳理神经网络训练的架构。

一般我们训练神经网络有以下步骤:

推荐文章:

python实现可视化大屏

分享4款 Python 自动数据分析神器

以下,我就将上述步骤使用代码进行注释讲解:

1 导入库

import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
from torch.utils.data import DataLoader, DataLoader
import torchvision
import torchvision.transforms as transforms

2 设置初始值

# 学习率
lr = 0.15
# 优化算法参数
gamma = 0.8
# 每次小批次训练个数
bs = 128
# 整体数据循环次数
epochs = 10

3 导入并制作数据集

本次我们使用FashionMNIST图像数据集,每个图像是一个28*28的像素数组,共有10个衣物类别,比如连衣裙、运动鞋、包等。

注:初次运行下载需要等待较长时间。

# 导入数据集
mnist = torchvision.datasets.FashionMNIST(
    root = './Datastes'
    , train = True
    , download = True
    , transform = transforms.ToTensor())
    
# 制作数据集
batchdata = DataLoader(mnist
                       , batch_size = bs
                       , shuffle = True
                       , drop_last = False)

我们可以对数据进行检查:

for x, y in batchdata:
    print(x.shape)
    print(y.shape)
    break

# torch.Size([128, 1, 28, 28])
# torch.Size([128])

可以看到一个batch中有128个样本,每个样本的维度是1*28*28。

之后我们确定模型的输入维度与输出维度:

# 输入的维度
input_ = mnist.data[0].numel()
# 784

# 输出的维度
output_ = len(mnist.targets.unique())
# 10

4 定义神经网络架构

先使用一个128个神经元的全连接层,然后用relu激活函数,再将其结果映射到标签的维度,并使用softmax进行激活。

# 定义神经网络架构
class Model(nn.Module):
    def __init__(self, in_features, out_features):
        super().__init__()
        self.linear1 = nn.Linear(in_features, 128, bias = True)
        self.output = nn.Linear(128, out_features, bias = True)
    
    def forward(self, x):
        x = x.view(-1, 28*28)
        sigma1 = torch.relu(self.linear1(x))
        sigma2 = F.log_softmax(self.output(sigma1), dim = -1)
        return sigma2

5 定义训练流程

在实际应用中,我们一般会将训练模型部分封装成一个函数,而这个函数可以继续细分为以下几步:

在此六步核心操作的基础上,我们通常还需要对模型的训练进度、损失值与准确度进行监视。

注释代码如下:

# 封装训练模型的函数
def fit(net, batchdata, lr, gamma, epochs):
# 参数:模型架构、数据、学习率、优化算法参数、遍历数据次数

    # 5.1 定义损失函数
    criterion = nn.NLLLoss()
    # 5.1 定义优化算法
    opt = optim.SGD(net.parameters(), lr = lr, momentum = gamma)
    
    # 监视进度:循环之前,一个样本都没有看过
    samples = 0
    # 监视准确度:循环之前,预测正确的个数为0
    corrects = 0
    
    # 全数据训练几次
    for epoch in range(epochs):
        # 对每个batch进行训练
        for batch_idx, (x, y) in enumerate(batchdata):
            # 保险起见,将标签转为1维,与样本对齐
            y = y.view(x.shape[0])
            
            # 5.2 正向传播
            sigma = net.forward(x)
            # 5.3 计算损失
            loss = criterion(sigma, y)
            # 5.4 反向传播
            loss.backward()
            # 5.5 更新梯度
            opt.step()
            # 5.6 梯度清零
            opt.zero_grad()
            
            # 监视进度:每训练一个batch,模型见过的数据就会增加x.shape[0]
            samples += x.shape[0]
            
            # 求解准确度:全部判断正确的样本量/已经看过的总样本量
            # 得到预测标签
            yhat = torch.max(sigma, -1)[1]
            # 将正确的加起来
            corrects += torch.sum(yhat == y)
            
            # 每200个batch和最后结束时,打印模型的进度
            if (batch_idx + 1) % 200 == 0 or batch_idx == (len(batchdata) - 1):
                # 监督模型进度
                print("Epoch{}:[{}/{} {: .0f}%], Loss:{:.6f}, Accuracy:{:.6f}".format(
                    epoch + 1
                    , samples
                    , epochs*len(batchdata.dataset)
                    , 100*samples/(epochs*len(batchdata.dataset))
                    , loss.data.item()
                    , float(100.0*corrects/samples)))

6 训练模型

# 设置随机种子
torch.manual_seed(51)

# 实例化模型
net = Model(input_, output_)

# 训练模型
fit(net, batchdata, lr, gamma, epochs)
# Epoch1:[25600/600000  4%], Loss:0.524430, Accuracy:69.570312
# Epoch1:[51200/600000  9%], Loss:0.363422, Accuracy:74.984375
# ......
# Epoch10:[600000/600000  100%], Loss:0.284664, Accuracy:85.771835

现在我们已经用Pytorch训练了最基础的神经网络,并且可以查看其训练成果。大家可以将代码复制进行运行!

虽然没有用到复杂的模型,但是我们在每次建模时的基本思想都是一致的

加载全部内容

相关教程
猜你喜欢
用户评论