Pytorch建模流程
Python学习与数据挖掘 人气:0本节内容学习帮助大家梳理神经网络训练的架构。
一般我们训练神经网络有以下步骤:
- 导入库
- 设置训练参数的初始值
- 导入数据集并制作数据集
- 定义神经网络架构
- 定义训练流程
- 训练模型
推荐文章:
以下,我就将上述步骤使用代码进行注释讲解:
1 导入库
import torch from torch import nn from torch.nn import functional as F from torch import optim from torch.utils.data import DataLoader, DataLoader import torchvision import torchvision.transforms as transforms
2 设置初始值
# 学习率 lr = 0.15 # 优化算法参数 gamma = 0.8 # 每次小批次训练个数 bs = 128 # 整体数据循环次数 epochs = 10
3 导入并制作数据集
本次我们使用FashionMNIST
图像数据集,每个图像是一个28*28的像素数组,共有10个衣物类别,比如连衣裙、运动鞋、包等。
注:初次运行下载需要等待较长时间。
# 导入数据集 mnist = torchvision.datasets.FashionMNIST( root = './Datastes' , train = True , download = True , transform = transforms.ToTensor()) # 制作数据集 batchdata = DataLoader(mnist , batch_size = bs , shuffle = True , drop_last = False)
我们可以对数据进行检查:
for x, y in batchdata: print(x.shape) print(y.shape) break # torch.Size([128, 1, 28, 28]) # torch.Size([128])
可以看到一个batch
中有128个样本,每个样本的维度是1*28*28。
之后我们确定模型的输入维度与输出维度:
# 输入的维度 input_ = mnist.data[0].numel() # 784 # 输出的维度 output_ = len(mnist.targets.unique()) # 10
4 定义神经网络架构
先使用一个128个神经元的全连接层,然后用relu激活函数,再将其结果映射到标签的维度,并使用softmax
进行激活。
# 定义神经网络架构 class Model(nn.Module): def __init__(self, in_features, out_features): super().__init__() self.linear1 = nn.Linear(in_features, 128, bias = True) self.output = nn.Linear(128, out_features, bias = True) def forward(self, x): x = x.view(-1, 28*28) sigma1 = torch.relu(self.linear1(x)) sigma2 = F.log_softmax(self.output(sigma1), dim = -1) return sigma2
5 定义训练流程
在实际应用中,我们一般会将训练模型部分封装成一个函数,而这个函数可以继续细分为以下几步:
- 定义损失函数与优化器
- 完成向前传播
- 计算损失
- 反向传播
- 梯度更新
- 梯度清零
在此六步核心操作的基础上,我们通常还需要对模型的训练进度、损失值与准确度进行监视。
注释代码如下:
# 封装训练模型的函数 def fit(net, batchdata, lr, gamma, epochs): # 参数:模型架构、数据、学习率、优化算法参数、遍历数据次数 # 5.1 定义损失函数 criterion = nn.NLLLoss() # 5.1 定义优化算法 opt = optim.SGD(net.parameters(), lr = lr, momentum = gamma) # 监视进度:循环之前,一个样本都没有看过 samples = 0 # 监视准确度:循环之前,预测正确的个数为0 corrects = 0 # 全数据训练几次 for epoch in range(epochs): # 对每个batch进行训练 for batch_idx, (x, y) in enumerate(batchdata): # 保险起见,将标签转为1维,与样本对齐 y = y.view(x.shape[0]) # 5.2 正向传播 sigma = net.forward(x) # 5.3 计算损失 loss = criterion(sigma, y) # 5.4 反向传播 loss.backward() # 5.5 更新梯度 opt.step() # 5.6 梯度清零 opt.zero_grad() # 监视进度:每训练一个batch,模型见过的数据就会增加x.shape[0] samples += x.shape[0] # 求解准确度:全部判断正确的样本量/已经看过的总样本量 # 得到预测标签 yhat = torch.max(sigma, -1)[1] # 将正确的加起来 corrects += torch.sum(yhat == y) # 每200个batch和最后结束时,打印模型的进度 if (batch_idx + 1) % 200 == 0 or batch_idx == (len(batchdata) - 1): # 监督模型进度 print("Epoch{}:[{}/{} {: .0f}%], Loss:{:.6f}, Accuracy:{:.6f}".format( epoch + 1 , samples , epochs*len(batchdata.dataset) , 100*samples/(epochs*len(batchdata.dataset)) , loss.data.item() , float(100.0*corrects/samples)))
6 训练模型
# 设置随机种子 torch.manual_seed(51) # 实例化模型 net = Model(input_, output_) # 训练模型 fit(net, batchdata, lr, gamma, epochs) # Epoch1:[25600/600000 4%], Loss:0.524430, Accuracy:69.570312 # Epoch1:[51200/600000 9%], Loss:0.363422, Accuracy:74.984375 # ...... # Epoch10:[600000/600000 100%], Loss:0.284664, Accuracy:85.771835
现在我们已经用Pytorch
训练了最基础的神经网络,并且可以查看其训练成果。大家可以将代码复制进行运行!
虽然没有用到复杂的模型,但是我们在每次建模时的基本思想都是一致的
加载全部内容