Java数据结构与算法
威斯布鲁克.猩猩 人气:0一、双向链表
使用带head头的双向链表实现 - 水浒英雄排行榜管理单向链表的缺点分析:
- 单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找。
- 单向链表不能自我删除,需要靠辅助节点,而双向链表,则可以自我删除,所以前面我们单链表删除节点时,总是找到temp,temp时待删除节点的前一个节点(认真体会)。
分析双向链表的遍历,添加,修改,删除的操作思路
1.遍历和单链表一样只是可以向前,也可以向后查找
2.添加(默认添加到双向链表的最后)
- 先找到双向链表的最后这个节点
- temp.next = newHeroNode
- newHeroNode.pre = temp
3.修改思路和原理与单向链表一样
4.删除
- 因为时双向链表,因此,我们可以实现自我删除某个节点
- 直接找到要删除的这个节点,比如temp
- temp.pre.next = temp.next
- temp.next.pre = temp.pre
public class DoubleLinkedListDemo { public static void main(String[] args) { // 测试 System.out.println("双向链表的测试"); // 先创建节点 HeroNode2 hero1 = new HeroNode2(1, "宋江", "及时雨"); HeroNode2 hero2 = new HeroNode2(2, "卢俊义", "玉麒麟"); HeroNode2 hero3 = new HeroNode2(3, "吴用", "智多星"); HeroNode2 hero4 = new HeroNode2(4, "林冲", "豹子头"); // 创建一个双向链表 DoubleLinkedList doubleLinkedList = new DoubleLinkedList(); // 加入 doubleLinkedList.add(hero1); doubleLinkedList.add(hero2); doubleLinkedList.add(hero3); doubleLinkedList.add(hero4); doubleLinkedList.list(); // 修改 HeroNode2 newHeroNode = new HeroNode2(4, "公孙胜", "入云龙"); doubleLinkedList.update(newHeroNode); System.out.println("修改后的链表情况"); doubleLinkedList.list(); // 删除 doubleLinkedList.del(3); System.out.println("删除后的链表情况~~"); doubleLinkedList.list(); } } //创建一个双向链表的类 class DoubleLinkedList { // 先初始化一个头节点,头节点不要动,不存放具体的数据 private HeroNode2 head = new HeroNode2(0, "", ""); // 返回头节点 public HeroNode2 getHead() { return head; } // 显示链表[遍历] public void list() { // 判断链表是否为空 if (head.next == null) { System.out.println("链表为空"); return; } // 因为头节点,不能动,因此我们需要一个辅助变量来遍历 HeroNode2 temp = head.next; while (true) { // 判断是否到链表最后 if (temp == null) { break; } // 输出节点的信息 System.out.println(temp); // 将temp后移,一定小心 temp = temp.next; } } // 添加一个节点到双向链表的最后 public void add(HeroNode2 heroNode) { // 因为head节点不能动,因此我们需要一个辅助变量temp HeroNode2 temp = head; // 遍历链表,找到最后 while (true) { // 找到链表的最后 if (temp.next == null) { break; } // 如果没有找到最后,将temp后移 temp = temp.next; } // 当退出while循环时,temp就指向了链表的最后 // 形成一个双向链表 temp.next = heroNode; heroNode.pre = temp; } // 修改一个节点的内容,双向链表的节点内容修改和单向链表一样 // 只是节点类型改成HeroNode2 public void update(HeroNode2 newHeroNode) { // 判断是否空 if (head.next == null) { System.out.println("链表为空~~"); return; } // 找到需要修改的节点,根据no编号 // 定义一个辅助变量 HeroNode2 temp = head.next; boolean flag = false;// 表示是否找到该节点 while (true) { if (temp == null) { break;// 已经遍历完链表 } if (temp.no == newHeroNode.no) { // 找到 flag = true; break; } temp = temp.next; } // 根据flag判断是否找到要修改的节点 if (flag) { temp.name = newHeroNode.name; temp.nickname = newHeroNode.nickname; } else {// 没有找到 System.out.printf("没有找到编号 %d 的节点,不能修改\n", newHeroNode.no); } } // 从双向链表中删除一个节点 // 说明 // 1. 对于双向链表,我们可以直接找到要删除的这个节点 // 2. 找到后,自我删除即可 public void del(int no) { // 判断当前链表是否为空 if (head.next == null) {// 空链表 System.out.println("链表为空,无法删除"); return; } HeroNode2 temp = head.next;// 辅助变量(指针),指向第一个节点(与单向链表不同) boolean flag = false;// 标志是否找到待删除节点 while (true) { if (temp.next == null) {// 已经到链表的最后节点的next break; } if (temp.next.no == no) { // 找到的待删除节点的前一个节点temp flag = true; break; } temp = temp.next;// temp后移,遍历 } // 判断flag if (flag) {// 找到 // 可以删除 temp.pre.next = temp.next; // 如果是最后一个节点,就不需要执行下面的这句话,否则出现空指针 if (temp.next != null) { temp.next.pre = temp.pre; } } else { System.out.printf("要删除的 %d 节点不存在\n", no); } } } //定义HeroNode2,每个HeroNode对象就是一个节点 class HeroNode2 { public int no; public String name; public String nickname; public HeroNode2 next;// 指向下一个节点,默认为null public HeroNode2 pre;// 指向前一个节点,默认为null // 构造器 public HeroNode2(int no, String name, String nickname) { this.no = no; this.name = name; this.nickname = nickname; } // 为了显示方便,我们重写toString @Override public String toString() { return "HeroNode2 [no=" + no + ", name=" + name + ", nickname=" + nickname + "]"; } }
二、环形链表及其应用:约瑟夫问题
环形链表图示
构建一个单向的环形链表思路
1.先创建第一个节点,让 first 指向该节点,并形成环形
2.后面当我们每创建一个新的节点,就把该节点加入到已有的环形链表中即可。
遍历环形链表
1.先让一个辅助指针(变量)curBoy,指向 first 节点
2.然后通过一个 while 循环遍历该环形链表即可 cur.Boy.next == first 结束
约瑟夫问题
1.创建一个辅助指针(变量)helper,事先应该指向环形链表的最后这个节点。
2.小孩报数前,先让 first 和 helper 移动 k -1次(移动到报数的小孩)
3.当小孩报数时,让 first 和 helper 指针同时的移动 m - 1次
4.这时就可以将 first 指向的小孩节点出圈
first = first.next
helper.next = first
原来 first 指向的节点就没有任何引用,就会被回收
public class Josepfu { public static void main(String[] args) { // 测试看看构建环形链表,和遍历是否ok CircleSingleLinkedList circleSingleLinkedList = new CircleSingleLinkedList(); circleSingleLinkedList.addBoy(5);// 加入5个小孩节点 circleSingleLinkedList.showBoy(); // 测试小孩出圈是否正确 circleSingleLinkedList.countBoy(1, 2, 5);// 2->4->1->5->3 } } //创建一个环形的单向链表 class CircleSingleLinkedList { // 创建一个first节点,当前没有编号 private Boy first = null; // 添加小孩节点,构建一个环形的链表 public void addBoy(int nums) { // nums 做一个数据校验 if (nums < 1) { System.out.println("nums的值不正确"); return; } Boy curBoy = null;// 辅助指针,帮助构建环形链表 // 使用for来创建环形链表 for (int i = 1; i <= nums; i++) { // 根据编号,创建小孩节点 Boy boy = new Boy(i); // 如果是第一个小孩 if (i == 1) { first = boy; first.setNext(first);// 构成环(暂时是一个节点的环) curBoy = first;// 让curBoy指向第一个小孩 } else {// 这块的操作看不懂,可以回去看一下当时老师视频里的流程图,特别好理解!!!!!!!!!! curBoy.setNext(boy); boy.setNext(first); curBoy = boy; } } } // 遍历当前的环形链表 public void showBoy() { // 判断链表是否为空 if (first == null) { System.out.println("没有任何小孩~~"); return; } // 因为first不能动,因此我们仍然使用一个辅助指针完成遍历 Boy curBoy = first; while (true) { System.out.printf("小孩的编号 %d \n", curBoy.getNo()); if (curBoy.getNext() == first) {// 说明已经遍历完毕 break; } curBoy = curBoy.getNext();// curBoy后移 } } // 根据用户的输入,计算出小孩出圈的顺序 /** * @param startNo 表示从第几个小孩开始数数 * @param countNum 表示数几下 * @param nums 表示最初有多少小孩在圈中 */ public void countBoy(int startNo, int countNum, int nums) { // 先对数据进行校验 if (first == null || startNo < 1 || startNo > nums) { System.out.println("参数输入有误,请重新输入"); return; } // 创建一个辅助指针,帮助完成小孩出圈 Boy helper = first; // 需要创建一个辅助指针(变量)helper,事先应该指向环形链表的最后这个节点 while (true) { if (helper.getNext() == first) {// 说明helper指向最后小孩节点 break; } helper = helper.getNext(); } // 小孩报数前,先让first 和 helper 移动 k - 1次 for (int j = 0; j < startNo - 1; j++) { first = first.getNext(); helper = helper.getNext(); } // 当小孩报数时,让 first 和 helper 指针同时的移动 m -1次,然后出圈 // 这里是一个循环操作,直到圈中只有一个节点 while (true) { if (helper == first) {// 说明圈中只有一个节点 break; } // 让first 和 helper 指针同时的移动 countNum - 1 for (int j = 0; j < countNum - 1; j++) { first = first.getNext(); helper = helper.getNext(); } // 这时first指向的节点,就是要出圈的小孩节点 System.out.printf("小孩%d出圈\n", first.getNo()); // 这时将first指向的小孩节点出圈 first = first.getNext(); helper.setNext(first); } System.out.printf("最后留在圈中的小孩编号%d \n", first.getNo()); } } //创建一个Boy类,表示一个节点 class Boy { private int no;// 编号 private Boy next;// 指向下一个节点,默认null public Boy(int no) { this.no = no; } public int getNo() { return no; } public void setNo(int no) { this.no = no; } public Boy getNext() { return next; } public void setNext(Boy next) { this.next = next; } }
加载全部内容