亲宝软件园·资讯

展开

CNN Pytorch CNN的Pytorch实现(LeNet)

很随便的wei 人气:0
想了解CNN的Pytorch实现(LeNet)的相关内容吗,很随便的wei在本文为您仔细讲解CNN Pytorch的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:CNN,Pytorch实现,卷积神经网络,Pytorch实现,下面大家一起来学习吧。

CNN的Pytorch实现(LeNet)

  上次写了一篇CNN的详解,可是累坏了老僧我。写完后拿给朋友看,朋友说你这Pytorch的实现方式对于新人来讲会很不友好,然后反问我说里面所有的细节你都明白了吗。我想想,的确如此。那个源码是我当时《动手学pytorch》的时候整理的,里面有很多包装过的函数,对于新入门的人来讲,的确是个大问题。于是,痛定思痛的我决定重新写Pytorch实现这一部分,理论部分我就不多讲了,咱们直接分析代码,此代码是来自Pytorch官方给出的LeNet Model。你可以使用Jupyter Notebook一行一行的学习,也可以使用Pycharm进行断点训练和Debug来学习。

没有看过理论部分的同学可以看我上篇文章:一文带你了解CNN(卷积神经网络)

  在整个讲解的过程中,其中的一些比较重要的代码我会引入一些例子来进行解释它的功能,如果你想先直接跑通代码,可以直接跳到代码汇总部分,Here we go~

1. 任务目标

  这是一个对于彩色图的10分类的问题,具体种类有:'plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck',训练一个能够对其进行分类的分类器。

2. 库的导入

这一部分咱们就不说太多了吧,直接上code:

import torch # 张量的有关运算,如创建、索引、连接、转置....和numpy的操作很像
import torch.nn as nn # 八廓搭建神经网络层的模块、loss等等
import torch.nn.functional as F # 常用的激活函数都在这里面
import torchvision # 专门处理图像的库
import torch.optim as optim # 各种参数优化方法,SGD、Adam...
import torchvision.transforms as transforms # 提供了一般的图像转换操作的类,也可以用于图像增强
import matplotlib.pyplot as plt 
import numpy as np 

3. 模型定义

  我们在定义自己网络的时候,需要继承nn.Module类,并重新实现构造函数__init__和forward两个方法。forward方法是必须要重写的,它是实现模型的功能,实现各个层之间的连接关系的核心。如果你是用我下面的这个方法来定义的模型,在forward中要去连接它们之间的关系;如果你是用Sequential的方法来定义的模型,一般来讲可以直接在构造函数定义好后,在foward函数中return就行了(如果模型比较复杂就另当别论)。

class LeNet(nn.Module):
    """
    	下面这个模型定义没有用Sequential来定义,Sequential的定义方法能够在init中就给出各个层
    	之间的关系,我这里是根据是否有可学习的参数。我将可学习参数的层(如全连接、卷积)放在构造函数
    	中(其实你想把不具有参数的层放在里面也可以),把不具有学习参数的层(如dropout,
    	ReLU等激活函数、BN层)放在forward。
 
    """
    def __init__(self):
        super(LeNet,self).__init__()   

        # 第一个卷积块,这里输入的是3通道,彩色图。
        self.conv1 = nn.Conv2d(3,16,5)
        self.pool1 = nn.MaxPool2d(2,2)

        # 第二个卷积块
        self.conv2 = nn.Conv2d(16,32,5)
        self.pool2 = nn.MaxPool2d(2,2)

        # 稠密块,包含三个全连接层
        self.fc1 = nn.Linear(32*5*5,120)
        self.fc2 = nn.Linear(120,84)
        self.fc3 = nn.Linear(84,10)
        pass

    def forward(self,x):
        # x是输入数据,是一个tensor
        # 正向传播
        x = F.relu(self.conv1(x))    # input(3, 32, 32) output(16, 28, 28)
        x = self.pool1(x)            # output(16, 14, 14)
        x = F.relu(self.conv2(x))    # output(32, 10, 10)
        x = self.pool2(x)            # output(32, 5, 5)
        x = x.view(-1, 32*5*5)       # output(32*5*5)
        # 数据通过view展成一维向量,第一个参数-1是batch,自动推理;32x5x5是展平后的个数
        x = F.relu(self.fc1(x))      # output(120)
        x = F.relu(self.fc2(x))      # output(84)
        x = self.fc3(x)              # output(10)

        # 为什么没有用softmax函数 --- 在网络模型中已经计算交叉熵以及概率
        return x

我们还可以随便看一下可训练参数:

model = LeNet()
for name,parameters in model.named_parameters():
    if param.requires_grad:    
        print(name,':',parameters.size())

看一下实例化的模型:

import torch
input1 = torch.rand([32,3,32,32])
model = LeNet() # 模式实例化
print(model) # 看一下模型结构
output = model(input1)

这里就不再拓展了,我发4我发4,我会专门再写一篇使用pytorch查看特征矩阵 和卷积核参数的文章。

4. 数据加载、处理

# 调用设备内的GPU并打印出来
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))

# 定义图像数据的数据预处理方式
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 如果是第一次运行代码,没有下载数据集,则将download调制为True进行下载,并加载训练集
# transform是选择数据预处理的方式,我们已经提前定义
train_set = torchvision.datasets.CIFAR10(root='./data', train=True,
                                         download=False,transform=transform)

# 如果你是windows系统,一定要记得把num_workers设置为0,不然会报错。
# 这个是将数据集划为为n个批次,每个批次的数据集有batchSize张图片,shuffle是打乱数据集
train_loader = torch.utils.data.DataLoader(train_set, batch_size=36,
                                           shuffle=True, num_workers=0)

# 上面已经下载过的话,download设置为False
val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=False, transform=transform)

# 验证集不用打乱,把batchsize设置为1,每次拿出1张来验证
val_loader = torch.utils.data.DataLoader(val_set, batch_size=1
                                         shuffle=False, num_workers=0)

# 定义classes类别
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

val_data_iter = iter(val_loader) # 转换成可迭代的迭代器
val_image, val_label = val_data_iter.next()

# 定义imshow函数显示图像
def imshow(img):
    img = img / 2 + 0.5  # unnormalize -> 反标准化处理
    npimg = img.numpy() # numpy和tensor的通道顺序不同 tensor是通道度、宽度,numpy是高、宽、通
    
    # 使用transpose调整维度
    plt.imshow(np.transpose(npimg, (1, 2, 0))) #(1,2,0)-> 代表高度、宽度 通道
    plt.show()

imshow(torchvision.utils.make_grid(val_image))
# 显示图像结果:

在这个图像加载部分,我做了些其它的尝试,想要去发现train_set和train_loader之间的不同。这里你可以逐行取消我注释的代码,然后去观察,去对比,你就知道有哪些不一样了。

"""
	train_set:

    总结:经过多次尝试,发现train_set是用一个Dataset包装起来,用索引来提取第n个数据,提出的数据是一个元组。
    元组的第一个索引是Tensor的图像数据,(channel,height,width),索引的第二个数据是标签 int类型。
    可以选择用enumerate迭代器,也可以直接进行索引,这里因为没有batchsize的维度,所以可以直接调用自己写的
    imshow函数来显示图片
"""

for i,data in enumerate(train_set):
    if i == 7:
#         imshow(data[0])
#         print(data[0])
#         print(train_set[i][0]) # 查看train-set第七张图元组 的 索引0
        print(train_set[i][0].shape)
        print(train_set[i][1]) # 查看train-set第七张图元组 的 索引1
#         imshow(train_set[i][0])
        print(type(train_set[i][1]))
#         print(train_set[i].shape)
        print(data[0])
        print(data[0].shape)
#         print(type(data[i]))
"""
	train_loader

    总结:和Dataset类型不一样,DataLoader不能够直接用索引获取数据。需要用enumerate迭代器来获取 或者 iter.
    经过enumerate索引后,得到的data类型是拥有两个变量的列表类型。第一个变量是Tensor类型,用[batchSize,channel,height,width]表示
    批图像数据,里面是有batchsize张图的。第二个变量也是Tensor类型,是代表每张图像的标签,是个一维torch
    
"""

for i,data in enumerate(train_loader):
    if i == 7:
        print(type(data))
        print(len(data))
        print(type(data[0]))
        print(type(data[1]))
        print(data[0].shape)
        print(data[1].shape)
        print(type(data[1]))
#         print(data[0])
        print(data[1])      
#         print(type(data[2]))

5.模型训练

# 用GPU训练
import time
torch.cuda.synchronize()
start = time.time()

net = LeNet()
net.to(device) #使用GPU时把网络分配到指定的device中
loss_function = nn.CrossEntropyLoss() 
optimizer = optim.Adam(net.parameters(),lr=0.001) # Adam优化器

Loss = []
for epoch in range(5):
    # 这里就只训练5个epoch,你可以试试多个
    running_loss = 0.0
    for step,data in enumerate(train_loader,start=0):
        inputs,labels = data # data是一个列表,[数据,标签]
        
        # 清除历史梯度,加快训练
        optimizer.zero_grad()
        
        outputs = net(inputs.to(device)) # 将输入的数据分配到指定的GPU中
        
        loss = loss_function(outputs,labels.to(device)) # 将labels分配到指定的device
        
        loss.backward() # loss进行反向传播
        optimizer.step() # step进行参数更新
        
        # 打印数据
        running_loss += loss.item() # 每次计算完loss后加入到running_loss中
        if step % 500 == 499: # 每500个mini-batches 就打印一次
            with torch.no_grad(): 
                outputs = net(val_image.to(device))
                # outputs的shape = [32,10]
                # dim是max函数索引的维度,0是每列最大值,1是每行最大值
                predict_y = torch.max(outputs,dim=1)[1] # max函数返回的每个batchSize的最大值 + 索引。获取索引[1]
                    
                # == 来比较每个batchSize中的训练结果标签和原标签是否相同,如果预测正确就返回1,否则返回0,并累计正确的数量。
                # 得到的是tensor,用item转成数字,CPU时使用

                accuracy = (predict_y == val_label.to(device)).sum().item()/val_label.size(0) 
                # val_label.size是验证集中batchSize的大小
                print('[%d %5d] train_loss: %.3f test_accuracy:%.3f' % (epoch+1,step+1,
                                                                       running_loss/500,accuracy))
                Loss.append(running_loss)
                running_loss = 0.0
print('Finished Training')
            
torch.cuda.synchronize()
end = time.time()

print("训练用时:",end-start,'s')

五个epoch在我的GPU上训练了68s。

整个代码

model.py

import torch.nn as nn
import torch.nn.functional as F


class LeNet(nn.Module):
    # 要继承于nn.Moudule父类
    def __init__(self):
        # 初始化函数

        super(LeNet, self).__init__()
        # 使用super函数,解决多继承可能遇到的一些问题;调用基类的构造函数


        self.conv1 = nn.Conv2d(3, 16, 5) # 调用卷积层 (in_channels,out_channels(也是卷积核个数。输出的通道数),kernel_size(卷积核大小),stride)
        self.pool1 = nn.MaxPool2d(2, 2)  # 最大池化层,进行下采样
        self.conv2 = nn.Conv2d(16, 32, 5) # 输出的通道数为32
        self.pool2 = nn.MaxPool2d(2, 2)

        self.fc1 = nn.Linear(32*5*5, 120) # 全连接层输入是一维向量,这里是32x5x5,我们要展平,120是节点的个数
        # 32是通道数
        # Linear(input_features,output_features)

        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # x是输入数据,是一个tensor
        # 正向传播
        x = F.relu(self.conv1(x))    # input(3, 32, 32) output(16, 28, 28)
        x = self.pool1(x)            # output(16, 14, 14)
        x = F.relu(self.conv2(x))    # output(32, 10, 10)
        x = self.pool2(x)            # output(32, 5, 5)
        x = x.view(-1, 32*5*5)       # output(32*5*5)
        # 数据通过view展成一维向量,第一个参数-1是batch,自动推理;32x5x5是展平后的个数
        x = F.relu(self.fc1(x))      # output(120)
        x = F.relu(self.fc2(x))      # output(84)
        x = self.fc3(x)              # output(10)
        # 为什么没有用softmax函数 --- 在网络模型中已经计算交叉熵以及概率
        return x

import torch
input1 = torch.rand([32,3,32,32])
model = LeNet() # 模式实例化
print(model) # 看一下模型结构
output = model(input1)

train.py

import torch
import torchvision
import torch.nn as nn
from model import LeNet
import torch.optim as optim
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # 50000张训练图片
    # 第一次使用时要将download设置为True才会自动去下载数据集
    train_set = torchvision.datasets.CIFAR10(root='./data', train=True,
                                             download=False, transform=transform)

    train_loader = torch.utils.data.DataLoader(train_set, batch_size=36,
                                               shuffle=True, num_workers=0)
    # 把训练集读取,别分成一个一个批次的,shuffle可用于随机打乱;batch_size是一次处理36张图像
    # num_worker在windows下只能设置成0


    # 10000张验证图片
    # 第一次使用时要将download设置为True才会自动去下载数据集
    val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
                                           download=False, transform=transform)
    val_loader = torch.utils.data.DataLoader(val_set, batch_size=5000,
                                             shuffle=False, num_workers=0)
    # 验证集 一次拿出5000张1出来验证,不用打乱

    val_data_iter = iter(val_loader) # 转换成可迭代的迭代器
    val_image, val_label = val_data_iter.next()
    # 转换成迭代器后,用next方法可以得到测试的图像和图像的标签值
    
    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')



    # 这一部分用来看数据集
    # def imshow(img):
    #     img = img / 2 + 0.5  # unnormalize -> 反标准化处理
    #     npimg = img.numpy()
    #     plt.imshow(np.transpose(npimg, (1, 2, 0))) #(1,2,0)-> 代表高度、宽度 通道
    #     plt.show()
    #
    # # print labels
    # print(' '.join('%5s' % classes[val_label[j]] for j in range(4)))
    # imshow(torchvision.utils.make_grid(val_image))



    net = LeNet()
    net.to(device)  # 使用GPU时将网络分配到指定的device中,不使用GPU注释
    loss_function = nn.CrossEntropyLoss() # 已经包含了softmax函数
    optimizer = optim.Adam(net.parameters(), lr=0.001) #Adam优化器

    for epoch in range(5):  # loop over the dataset multiple times

        running_loss = 0.0
        for step, data in enumerate(train_loader, start=0):
            # get the inputs; data is a list of [inputs, labels]
            inputs, labels = data

            # zero the parameter gradients
            optimizer.zero_grad()
            # 一般batch_size根据硬件设备来设置的,这个清楚历史梯度,不让梯度累计,可以让配置低的用户加快训练

            # forward + backward + optimize 、、、、、CPU
            # outputs = net(inputs)
            # loss = loss_function(outputs, labels)

            # GPU使用时添加,不使用时注释
            outputs = net(inputs.to(device))  # 将inputs分配到指定的device中
            loss = loss_function(outputs, labels.to(device))  # 将labels分配到指定的device中

            loss.backward() # loss进行反向传播
            optimizer.step() # step进行参数更新

            # print statistics
            running_loss += loss.item() # m每次计算完后就加入到running_loss中
            if step % 500 == 499:    # print every 500 mini-batches
                with torch.no_grad(): # 在测试、预测过程中,这个函数可以优化内存,防止爆内存
                    # outputs = net(val_image)  # [batch, 10]
                    outputs = net(val_image.to(device))  # 使用GPU时用这行将test_image分配到指定的device中
                    predict_y = torch.max(outputs, dim=1)[1] #dim=1,因为dim=0是batch;[1]是索引,最大值在哪个位置
                    # accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)
                    # eq用来比较,如果预测正确返回1,错误返回0 -> 得到的是tensor,要用item转成数值 CPU时使用

                    accuracy = (predict_y==val_label.to(device)).sum().item() / val_label.size(0)

                    print('[%d, %5d] train_loss: %.3f  test_accuracy: %.3f' %
                          (epoch + 1, step + 1, running_loss / 500, accuracy))
                    running_loss = 0.0

    print('Finished Training')

    save_path = './Lenet.pth'
    torch.save(net.state_dict(), save_path)


if __name__ == '__main__':
    main()

Tips:数据集在当前目录下创建一个data文件夹,然后在train_set导入数据那里的download设置为True就可以下载了。如果你没有GPU的话,你可以使用CPU训练,只需要把代码中标记的GPU部分注释,注释掉的CPU部分取消注释就ok了。有条件还是GPU吧,CPU太慢了。

引用:

pytorch官方model

加载全部内容

相关教程
猜你喜欢
用户评论