pytorch手写数字图片识别 pytorch实现手写数字图片识别
虾米不打烊 人气:0想了解pytorch实现手写数字图片识别的相关内容吗,虾米不打烊在本文为您仔细讲解pytorch手写数字图片识别的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:pytorch手写数字图片识别,pytorch数字图片识别,pytorch图片识别,下面大家一起来学习吧。
数据集:MNIST数据集,代码中会自动下载,不用自己手动下载。数据集很小,不需要GPU设备,可以很好的体会到pytorch的魅力。
模型+训练+预测程序:
import torch from torch import nn from torch.nn import functional as F from torch import optim import torchvision from matplotlib import pyplot as plt from utils import plot_image, plot_curve, one_hot # step1 load dataset batch_size = 512 train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('mnist_data', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,) ) ])), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('mnist_data/', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,) ) ])), batch_size=batch_size, shuffle=False) x , y = next(iter(train_loader)) print(x.shape, y.shape, x.min(), x.max()) plot_image(x, y, "image_sample") class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28*28, 256) self.fc2 = nn.Linear(256, 64) self.fc3 = nn.Linear(64, 10) def forward(self, x): # x: [b, 1, 28, 28] # h1 = relu(xw1 + b1) x = F.relu(self.fc1(x)) # h2 = relu(h1w2 + b2) x = F.relu(self.fc2(x)) # h3 = h2w3 + b3 x = self.fc3(x) return x net = Net() optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) train_loss = [] for epoch in range(3): for batch_idx, (x, y) in enumerate(train_loader): #加载进来的图片是一个四维的tensor,x: [b, 1, 28, 28], y:[512] #但是我们网络的输入要是一个一维向量(也就是二维tensor),所以要进行展平操作 x = x.view(x.size(0), 28*28) # [b, 10] out = net(x) y_onehot = one_hot(y) # loss = mse(out, y_onehot) loss = F.mse_loss(out, y_onehot) optimizer.zero_grad() loss.backward() # w' = w - lr*grad optimizer.step() train_loss.append(loss.item()) if batch_idx % 10 == 0: print(epoch, batch_idx, loss.item()) plot_curve(train_loss) # we get optimal [w1, b1, w2, b2, w3, b3] total_correct = 0 for x,y in test_loader: x = x.view(x.size(0), 28*28) out = net(x) # out: [b, 10] pred = out.argmax(dim=1) correct = pred.eq(y).sum().float().item() total_correct += correct total_num = len(test_loader.dataset) acc = total_correct/total_num print("acc:", acc) x, y = next(iter(test_loader)) out = net(x.view(x.size(0), 28*28)) pred = out.argmax(dim=1) plot_image(x, pred, "test")
主程序中调用的函数(注意命名为utils):
import torch from matplotlib import pyplot as plt def plot_curve(data): fig = plt.figure() plt.plot(range(len(data)), data, color='blue') plt.legend(['value'], loc='upper right') plt.xlabel('step') plt.ylabel('value') plt.show() def plot_image(img, label, name): fig = plt.figure() for i in range(6): plt.subplot(2, 3, i + 1) plt.tight_layout() plt.imshow(img[i][0]*0.3081+0.1307, cmap='gray', interpolation='none') plt.title("{}: {}".format(name, label[i].item())) plt.xticks([]) plt.yticks([]) plt.show() def one_hot(label, depth=10): out = torch.zeros(label.size(0), depth) idx = torch.LongTensor(label).view(-1, 1) out.scatter_(dim=1, index=idx, value=1) return out
打印出损失下降的曲线图:
训练3个epoch之后,在测试集上的精度就可以89%左右,可见模型的准确度还是很不错的。
输出六张测试集的图片以及预测结果:
六张图片的预测全部正确。
加载全部内容