亲宝软件园·资讯

展开

C#快速排序 C#递归算法之快速排序

Robin 人气:0
想了解C#递归算法之快速排序的相关内容吗,Robin在本文为您仔细讲解C#快速排序的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:C#,递归算法,快速排序,下面大家一起来学习吧。

上两片第归算法学习:

1)递归算法之分而治之策略
2)递归算法之归并排序

  上一篇学习中介绍了了递归算法在排序中的一个应用:归并排序,在排序算法中还有一种算法用到了递归,那就是快速排序,快速排序也是一种利用了分而治之策略的算法,它由C.A.R发明,它依据中心元素的值,利用一系列递归调用将数据表划分成越来越小的子表。在每一步调用中,经过多次的交换,最终为中心元素找到最终的位置。与归并算法不同,快速排序是就地排序,而归并排序需要把元素在临时向量中拷贝,下面通过对以下向量进行排序来理解和加深快速排序算法的步骤:

v={800,150,300,650,550,500,400,350,450,400,900};

  利用快速排序算法对此数据表进行排序的第0级划分过程如下: 向量v的索引范围为:[first,last) = [0,10),则中心点的索引为mid = (0+10)/2=5,中心点的值为v[5] = 500

  快速排序算法的第一次划分的目的就是将向量v依据v[5]的值划分成两个子表subList1和subList2,其中subList1中的值都小于v[5],而subList2中的值都大于v[5],我们将subList1称为左子表,subList2称为右子表,并且确定v[5]的最终位置

下面就是实现这一目的需要我们作出的工作步骤:

1)首先将中心元素与起始位置的元素进行交换。

2)分别扫描左子表和右子表,左子表扫描起始位置为 first+1, 右子表从last-1开始。左子表从左向右扫描扫描,右子表从右向左扫描。直到左子表扫描位置大于或者等于右子表扫描位置时候结束。

在第一个步骤中,得到如下的数据表

500  150  300 650 550 800 400 350 450 400 

https://img.jbzj.com/file_images/article/201606/201606160900294.png

  而此时的左子表扫描位置处于索引1处,右子表扫描位置处于索引9处,先从左子表扫描,直到找到数据值大于中间值500的位置停止扫描,然后扫描右子表,直到找到数据值小于中间值500并且右子表的扫描位置(scanDown)要小于左子表开始位置,防止数据溢出。找到之后,交换左子表与右子表中中扫描位置的元素,图示如下:

https://img.jbzj.com/file_images/article/201606/201606160900295.png

在交换v[3](650>500)与v[8](450<500)后,继续扫描左子表和右子表,如图

https://img.jbzj.com/file_images/article/201606/201606160900296.png

  直到满足条件scanUp>=scanDown,然后scanDown所在位置就是中心元素500的最终位置,交换v[0]与v[scanDown)=v[5],第一次划分级别的最终结果数据集为:400,150,300,450,350,500,800,550,650,900,此时得到的左子表为:400,150,300,450,350,右子表为:800,550,650,900

  下一个划分级别是处理上一级别产生的子表,按照相同的处理方法分别处理左子表和右子表,左子表索引位置[0,5),右子表索引位置[6,10),按照上面的处理步骤处理左子表(400,150,300,450,350)得到的最终结果为:150,300,400,450,350 右子表最终处理结果为:550,650,800,900 在处理结果中300与650分别是中心值,他们现在的位置就是最终位置

  在接下来的处理中,总是处理上一步骤中留下的子表,当子表数目<=1的时候就不用处理子表了,而子表有两个元素的时候,比较大小,然后交换两元素位置即可。

大于2个元素的子表都和上面的处理步骤一样,我们将上面的处理过程编写出一个函数

private int PivotIndex(int[] v, int first, int last),那么快速排序算法就是对此函数的递归调用

/// <summary>
/// 交换位置
/// </summary>
/// <param name="v"></param>
/// <param name="index1"></param>
/// <param name="index2"></param>
private void Swrap(int[] v, int index1, int index2)
{
 int temp = v[index1];
 v[index1] = v[index2];
 v[index2] = temp;
}
/// <summary>
/// 将向量V中索引{first,last)划分成两个左子表和右子表
/// </summary>
/// <param name="v">向量V</param>
/// <param name="first">开始位置</param>
/// <param name="last">结束位置</param>
private int PivotIndex(int[] v, int first, int last)
{
 if (last == first)
 {
  return last;
 }
 if (last - first == 1)
 {
  return first;
 }
 int mid = (first + last) / 2;
 int midVal = v[mid];
 //交换v[first]和v[mid]
 Swrap(v, first, mid);
 int scanA = first + 1;
 int scanB = last - 1;
 for (; ; )
 { 

  while (scanA <= scanB && v[scanA] < midVal)
  {
   scanA++;
  }
  while (scanB > first && midVal <= v[scanB])
  {
   scanB--;
  }
  if (scanA >= scanB)
  {
   break;
  }
  Swrap(v, scanA, scanB);
  scanA++;
  scanB--;
 }
 Swrap(v, first, scanB);
 return scanB; 

}
public void Sort(int[] v, int first, int last)
{
 if (last - first <= 1)
 {
  return;
 }
 if (last - first == 2)
 {
  //有两个元素的子表
  if (v[first] > v[last - 1])
  {
   Swrap(v, first, last - 1);
  }
  return;
 }
 else
 {
  int pivotIndex = PivotIndex(v, first, last);
  Sort(v, first, pivotIndex);
  Sort(v, pivotIndex + 1, last);
 }
} 

  快速排序因为每次划分都能将中心值元素找到最终的位置,并且左边值都小于中心值,右边都大于中心值,它的时间复杂度平均和归并算法一致为O(nlog2n);

  任何一种基于比较的排序算法的时间复杂度不可能小于这个数,除非不使用比较的方法进行排序。

算法程序:http://xiazai.jb51.net/201606/yuanma/QuickSort(jb51.net).rar

加载全部内容

相关教程
猜你喜欢
用户评论