亲宝软件园·资讯

展开

numpy.reshape()的函数的具体使用

熊野君 人气:0

np.reshape()基本用法

常用于矩阵规格变换,将矩阵转换为特定的行和列的矩阵
格式:a1.reshape(x,y,z,…)
注意:将矩阵a1转变成(x, y,z,…)---->一维长度x,二维长度y,三维长度z,…的矩阵。
场景:matlibplot画图时x、y轴需要传入的是一维,可以用reshape()实现;再例如需要将多维的变成行向量或列向量时也经常要用

numpy.reshape(a, newshape, order='C')[source],参数`newshape`是啥意思?

根据Numpy文档(https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html)的解释:

newshape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. One shape dimension can be -1. In this case, **the value is inferred from the length of the array and remaining dimensions**.

大意是说,数组新的shape属性应该要与原来的配套,如果等于-1的话,那么Numpy会根据剩下的维度计算出数组的另外一个shape属性值。

举几个例子或许就清楚了,有一个数组z,它的shape属性是(4, 4)

z = np.array([[1, 2, 3, 4],
          [5, 6, 7, 8],
          [9, 10, 11, 12],
          [13, 14, 15, 16]])
z.shape
(4, 4)

z.reshape(-1)

z.reshape(-1)
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16])

z.reshape(-1, 1)

也就是说,先前我们不知道z的shape属性是多少,但是想让z变成只有一列,行数不知道多少,通过`z.reshape(-1,1)`,Numpy自动计算出有12行,新的数组shape属性为(16, 1),与原来的(4, 4)配套。

z.reshape(-1,1)
 array([[ 1],
        [ 2],
        [ 3],
        [ 4],
        [ 5],
        [ 6],
        [ 7],
        [ 8],
        [ 9],
        [10],
        [11],
        [12],
        [13],
        [14],
        [15],
        [16]])

z.reshape(-1, 2)

newshape等于-1,列数等于2,行数未知,reshape后的shape等于(8, 2)

 z.reshape(-1, 2)
 array([[ 1,  2],
        [ 3,  4],
        [ 5,  6],
        [ 7,  8],
        [ 9, 10],
        [11, 12],
        [13, 14],
        [15, 16]])

同理,只给定行数,newshape等于-1,Numpy也可以自动计算出新数组的列数。

加载全部内容

相关教程
猜你喜欢
用户评论