RocketMq深入分析讲解两种削峰方式
氵奄不死的鱼 人气:0何时需要削峰
当上游调用下游服务速率高于下游服务接口QPS时,那么如果不对调用速率进行控制,那么会发生很多失败请求
通过消息队列的削峰方法有两种
控制消费者消费速率和生产者投放延时消息,本质都是控制消费速度
通过消费者参数控制消费速度
先分析那些参数对控制消费速度有作用
1.PullInterval: 设置消费端,拉取mq消息的间隔时间。
注意:该时间算起时间是rocketMq消费者从broker消息后算起。经过PullInterval再次向broker拉去消息
源码分析:
首先需要了解rocketMq的消息拉去过程
拉去消息的类
PullMessageService
public class PullMessageService extends ServiceThread { private final InternalLogger log = ClientLogger.getLog(); private final LinkedBlockingQueue<PullRequest> pullRequestQueue = new LinkedBlockingQueue<PullRequest>(); private final MQClientInstance mQClientFactory; private final ScheduledExecutorService scheduledExecutorService = Executors .newSingleThreadScheduledExecutor(new ThreadFactory() { @Override public Thread newThread(Runnable r) { return new Thread(r, "PullMessageServiceScheduledThread"); } }); public PullMessageService(MQClientInstance mQClientFactory) { this.mQClientFactory = mQClientFactory; } public void executePullRequestLater(final PullRequest pullRequest, final long timeDelay) { if (!isStopped()) { this.scheduledExecutorService.schedule(new Runnable() { @Override public void run() { PullMessageService.this.executePullRequestImmediately(pullRequest); } }, timeDelay, TimeUnit.MILLISECONDS); } else { log.warn("PullMessageServiceScheduledThread has shutdown"); } } public void executePullRequestImmediately(final PullRequest pullRequest) { try { this.pullRequestQueue.put(pullRequest); } catch (InterruptedException e) { log.error("executePullRequestImmediately pullRequestQueue.put", e); } } public void executeTaskLater(final Runnable r, final long timeDelay) { if (!isStopped()) { this.scheduledExecutorService.schedule(r, timeDelay, TimeUnit.MILLISECONDS); } else { log.warn("PullMessageServiceScheduledThread has shutdown"); } } public ScheduledExecutorService getScheduledExecutorService() { return scheduledExecutorService; } private void pullMessage(final PullRequest pullRequest) { final MQConsumerInner consumer = this.mQClientFactory.selectConsumer(pullRequest.getConsumerGroup()); if (consumer != null) { DefaultMQPushConsumerImpl impl = (DefaultMQPushConsumerImpl) consumer; impl.pullMessage(pullRequest); } else { log.warn("No matched consumer for the PullRequest {}, drop it", pullRequest); } } @Override public void run() { log.info(this.getServiceName() + " service started"); while (!this.isStopped()) { try { PullRequest pullRequest = this.pullRequestQueue.take(); this.pullMessage(pullRequest); } catch (InterruptedException ignored) { } catch (Exception e) { log.error("Pull Message Service Run Method exception", e); } } log.info(this.getServiceName() + " service end"); } @Override public void shutdown(boolean interrupt) { super.shutdown(interrupt); ThreadUtils.shutdownGracefully(this.scheduledExecutorService, 1000, TimeUnit.MILLISECONDS); } @Override public String getServiceName() { return PullMessageService.class.getSimpleName(); } }
继承自ServiceThread,这是一个单线程执行的service,不断获取阻塞队列中的pullRequest,进行消息拉取。
executePullRequestLater会延时将pullrequest放入到pullRequestQueue,达到延时拉去的目的。
那么PullInterval参数就是根据这个功能发挥的作用,在消费者拉去消息成功的回调
PullCallback pullCallback = new PullCallback() { @Override public void onSuccess(PullResult pullResult) { if (pullResult != null) { pullResult = DefaultMQPushConsumerImpl.this.pullAPIWrapper.processPullResult(pullRequest.getMessageQueue(), pullResult, subscriptionData); switch (pullResult.getPullStatus()) { case FOUND: long prevRequestOffset = pullRequest.getNextOffset(); pullRequest.setNextOffset(pullResult.getNextBeginOffset()); long pullRT = System.currentTimeMillis() - beginTimestamp; DefaultMQPushConsumerImpl.this.getConsumerStatsManager().incPullRT(pullRequest.getConsumerGroup(), pullRequest.getMessageQueue().getTopic(), pullRT); long firstMsgOffset = Long.MAX_VALUE; if (pullResult.getMsgFoundList() == null || pullResult.getMsgFoundList().isEmpty()) { DefaultMQPushConsumerImpl.this.executePullRequestImmediately(pullRequest); } else { firstMsgOffset = pullResult.getMsgFoundList().get(0).getQueueOffset(); DefaultMQPushConsumerImpl.this.getConsumerStatsManager().incPullTPS(pullRequest.getConsumerGroup(), pullRequest.getMessageQueue().getTopic(), pullResult.getMsgFoundList().size()); boolean dispatchToConsume = processQueue.putMessage(pullResult.getMsgFoundList()); DefaultMQPushConsumerImpl.this.consumeMessageService.submitConsumeRequest( pullResult.getMsgFoundList(), processQueue, pullRequest.getMessageQueue(), dispatchToConsume); if (DefaultMQPushConsumerImpl.this.defaultMQPushConsumer.getPullInterval() > 0) { DefaultMQPushConsumerImpl.this.executePullRequestLater(pullRequest, DefaultMQPushConsumerImpl.this.defaultMQPushConsumer.getPullInterval()); } else { DefaultMQPushConsumerImpl.this.executePullRequestImmediately(pullRequest); } } if (pullResult.getNextBeginOffset() < prevRequestOffset || firstMsgOffset < prevRequestOffset) { log.warn( "[BUG] pull message result maybe data wrong, nextBeginOffset: {} firstMsgOffset: {} prevRequestOffset: {}", pullResult.getNextBeginOffset(), firstMsgOffset, prevRequestOffset); } break; case NO_NEW_MSG: pullRequest.setNextOffset(pullResult.getNextBeginOffset()); DefaultMQPushConsumerImpl.this.correctTagsOffset(pullRequest); DefaultMQPushConsumerImpl.this.executePullRequestImmediately(pullRequest); break; case NO_MATCHED_MSG: pullRequest.setNextOffset(pullResult.getNextBeginOffset()); DefaultMQPushConsumerImpl.this.correctTagsOffset(pullRequest); DefaultMQPushConsumerImpl.this.executePullRequestImmediately(pullRequest); break; case OFFSET_ILLEGAL: log.warn("the pull request offset illegal, {} {}", pullRequest.toString(), pullResult.toString()); pullRequest.setNextOffset(pullResult.getNextBeginOffset()); pullRequest.getProcessQueue().setDropped(true); DefaultMQPushConsumerImpl.this.executeTaskLater(new Runnable() { @Override public void run() { try { DefaultMQPushConsumerImpl.this.offsetStore.updateOffset(pullRequest.getMessageQueue(), pullRequest.getNextOffset(), false); DefaultMQPushConsumerImpl.this.offsetStore.persist(pullRequest.getMessageQueue()); DefaultMQPushConsumerImpl.this.rebalanceImpl.removeProcessQueue(pullRequest.getMessageQueue()); log.warn("fix the pull request offset, {}", pullRequest); } catch (Throwable e) { log.error("executeTaskLater Exception", e); } } }, 10000); break; default: break; } } } @Override public void onException(Throwable e) { if (!pullRequest.getMessageQueue().getTopic().startsWith(MixAll.RETRY_GROUP_TOPIC_PREFIX)) { log.warn("execute the pull request exception", e); } DefaultMQPushConsumerImpl.this.executePullRequestLater(pullRequest, PULL_TIME_DELAY_MILLS_WHEN_EXCEPTION); } };
在 case found的情况下,也就是拉取到消息的q情况,在PullInterval>0的情况下,会延时投递到pullRequestQueue中,实现拉取消息的间隔
if (DefaultMQPushConsumerImpl.this.defaultMQPushConsumer.getPullInterval() > 0) { DefaultMQPushConsumerImpl.this.executePullRequestLater(pullRequest, DefaultMQPushConsumerImpl.this.defaultMQPushConsumer.getPullInterval()); } else { DefaultMQPushConsumerImpl.this.executePullRequestImmediately(pullRequest); }
2.PullBatchSize: 设置每次pull消息的数量,该参数设置是针对逻辑消息队列,并不是每次pull消息拉到的总消息数
消费端分配了两个消费队列来监听。那么PullBatchSize 设置为32,那么该消费端每次pull到 64个消息。
消费端每次pull到消息总数=PullBatchSize*监听队列数
源码分析
消费者拉取消息时
org.apache.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl#pullMessage中
会执行
this.pullAPIWrapper.pullKernelImpl( pullRequest.getMessageQueue(), subExpression, subscriptionData.getExpressionType(), subscriptionData.getSubVersion(), pullRequest.getNextOffset(), this.defaultMQPushConsumer.getPullBatchSize(), sysFlag, commitOffsetValue, BROKER_SUSPEND_MAX_TIME_MILLIS, CONSUMER_TIMEOUT_MILLIS_WHEN_SUSPEND, CommunicationMode.ASYNC, pullCallback );
其中 this.defaultMQPushConsumer.getPullBatchSize(),就是配置的PullBatchSize,代表的是每次从broker的一个队列上拉取的最大消息数。
3.ThreadMin和ThreadMax: 消费端消费pull到的消息需要的线程数量。
源码分析:
还是在消费者拉取消息成功时
boolean dispatchToConsume = processQueue.putMessage(pullResult.getMsgFoundList()); DefaultMQPushConsumerImpl.this.consumeMessageService.submitConsumeRequest( pullResult.getMsgFoundList(), processQueue, pullRequest.getMessageQueue(), dispatchToConsume);
通过consumeMessageService执行
默认情况下是并发消费
org.apache.rocketmq.client.impl.consumer.ConsumeMessageConcurrentlyService#submitConsumeRequest
@Override public void submitConsumeRequest( final List<MessageExt> msgs, final ProcessQueue processQueue, final MessageQueue messageQueue, final boolean dispatchToConsume) { final int consumeBatchSize = this.defaultMQPushConsumer.getConsumeMessageBatchMaxSize(); if (msgs.size() <= consumeBatchSize) { ConsumeRequest consumeRequest = new ConsumeRequest(msgs, processQueue, messageQueue); try { this.consumeExecutor.submit(consumeRequest); } catch (RejectedExecutionException e) { this.submitConsumeRequestLater(consumeRequest); } } else { for (int total = 0; total < msgs.size(); ) { List<MessageExt> msgThis = new ArrayList<MessageExt>(consumeBatchSize); for (int i = 0; i < consumeBatchSize; i++, total++) { if (total < msgs.size()) { msgThis.add(msgs.get(total)); } else { break; } } ConsumeRequest consumeRequest = new ConsumeRequest(msgThis, processQueue, messageQueue); try { this.consumeExecutor.submit(consumeRequest); } catch (RejectedExecutionException e) { for (; total < msgs.size(); total++) { msgThis.add(msgs.get(total)); } this.submitConsumeRequestLater(consumeRequest); } } } }
其中consumeExecutor初始化
this.consumeExecutor = new ThreadPoolExecutor( this.defaultMQPushConsumer.getConsumeThreadMin(), this.defaultMQPushConsumer.getConsumeThreadMax(), 1000 * 60, TimeUnit.MILLISECONDS, this.consumeRequestQueue, new ThreadFactoryImpl("ConsumeMessageThread_"));
对象线程池最大和核心线程数。对于顺序消费ConsumeMessageOrderlyService也会使用最大和最小线程数这两个参数,只是消费时会锁定队列。
以上三种情况:是针对参数配置,来调整消费速度。
除了这三种情况外还有两种服务部署情况,可以调整消费速度:
4.rocketMq 逻辑消费队列配置数量 有消费端每次pull到消息总数=PullBatchSize*监听队列数
可知rocketMq 逻辑消费队列配置数量即上图中的 queue1 ,queue2,配置数量越多每次pull到的消息总数也就越多。如果下边配置读队列数量:修改tocpic的逻辑队列数量
5.消费端节点部署数量 :
部署数量无论一个节点监听所有队列,还是多个节点按照分配策略分配监听队列数量,理论上每秒pull到的数量都一样的,但是多节点消费端消费线程数量要比单节点消费线程数量多,也就是多节点消费速度大于单节点。
消费延时控流
针对消息订阅者的消费延时流控的基本原理是,每次消费时在客户端增加一个延时来控制消费速度,此时理论上消费并发最快速度为:
单节点部署:
ConsumInterval :延时时间单位毫秒
ConcurrentThreadNumber:消费端线程数量
MaxRate :理论每秒处理数量
MaxRate = 1 / ConsumInterval * ConcurrentThreadNumber
如果消息并发消费线程(ConcurrentThreadNumber)为 20,延时(ConsumInterval)为 100 ms,代入上述公式可得
如果消息并发消费线程(ConcurrentThreadNumber)为 20,延时(ConsumInterval)为 100 ms,代入上述公式可得
200 = 1 / 0.1 * 20
由上可知,理论上可以将并发消费控制在 200 以下
如果是多个节点部署如两个节点,理论消费速度最高为每秒处理400个消息。
如下延时流控代码:
/** * 测试mq 并发 接受 */ @Component @RocketMQMessageListener(topic = ConstantTopic.WRITING_LIKE_TOPIC,selectorExpression = ConstantTopic.WRITING_LIKE_ADD_TAG, consumerGroup = "writing_like_topic_add_group") class ConsumerLikeSave implements RocketMQListener<LikeWritingParams>, RocketMQPushConsumerLifecycleListener{ @SneakyThrows @Override public void onMessage(LikeWritingParams params) { System.out.println("睡上0.1秒"); Thread.sleep(100); long begin = System.currentTimeMillis(); System.out.println("mq消费速度"+Thread.currentThread().getName()+" "+DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS").format(LocalDateTime.now())); //writingLikeService.saveLike2Db(params.getUserId(),params.getWritingId()); long end = System.currentTimeMillis(); // System.out.println("消费:: " +Thread.currentThread().getName()+ "毫秒:"+(end - begin)); } @Override public void prepareStart(DefaultMQPushConsumer defaultMQPushConsumer) { defaultMQPushConsumer.setConsumeThreadMin(20); //消费端拉去到消息以后分配线索去消费 defaultMQPushConsumer.setConsumeThreadMax(50);//最大消费线程,一般情况下,默认队列没有塞满,是不会启用新的线程的 defaultMQPushConsumer.setPullInterval(0);//消费端多久一次去rocketMq 拉去消息 defaultMQPushConsumer.setPullBatchSize(32); //消费端每个队列一次拉去多少个消息,若该消费端分赔了N个监控队列,那么消费端每次去rocketMq拉去消息说为N*1 defaultMQPushConsumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP); defaultMQPushConsumer.setConsumeTimestamp(UtilAll.timeMillisToHumanString3(System.currentTimeMillis())); defaultMQPushConsumer.setConsumeMessageBatchMaxSize(2); } }
注释:如上消费端,单节点每秒处理速度也就是最高200个消息,实际上要小于200,业务代码执行也是需要时间。
但是要注意实际操作中并发流控实际是默认存在的,
spring boot 消费端默认配置
this.consumeThreadMin = 20;
this.consumeThreadMax = 20;
this.pullInterval = 0L;
this.pullBatchSize = 32;
若业务逻辑执行需要20ms,那么单节点处理速度就是:1/0.02*20=1000
这里默认拉去的速度1s内远大于1000
注意: 这里虽然pullInterval 等于0 当时受限于每次拉去64个,处理完也是需要一端时间才能回复ack,才能再次拉取,所以消费速度应该小于1000
所以并发流控要消费速度大于消费延时流控 ,那么消费延时流控才有意义
使用rokcetMq支持的延时消息也可以实现消息的延时消费,通过对delayLevel对应的时间进行配置为我们的需求。为不同的消息设置不同delayLevel,达到延时消费的目的。
总结
rocketMq 肖锋流控两种方式:
并发流控:就是根据业务流控速率要求,来调整topic 消费队列数量(read queue),消费端部署节点,消费端拉去间隔时间,消费端消费线程数量等,来达到要求的速率内
延时消费流控:就是在消费端延时消费消息(sleep),具体延时多少要根据业务要求速率,和消费端线程数量,和节点部署数量来控制
加载全部内容