亲宝软件园·资讯

展开

C语言实现求解素数的N种方法总结

博客小梦 人气:0

前言

哈喽各位友友们,我今天又学到了很多有趣的知识,现在迫不及待的想和大家分享一下!我仅已此文,手把手带领大家探讨利用试除法、筛选法求解素数的n层境界!都是精华内容,可不要错过哟!!!

必备小知识

质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。这里以求解100~200之间的素数举例讲解

C语言详解《试除法》求解素数

试除法境界1

境界1实现思路分析: 

看了文字的描述,大家可能理解的还是不够深刻。这里俺亲自敲出代码辅助大家理解~ 

境界1源码: 

#include<stdio.h>
int main()
{
    
    int count = 0;//记录试除次数
    int i = 0;
    int j = 0;
    for (i = 100; i <= 200; i++)
    {
        int flag = 1;//flag最终结果为1,表示i是素数,为0表示不是素数。
        for (j = 2; j < i; j++)
        {
            count++;
            if (i % j == 0)
            {
                flag = 0;
                break;
            }

        }
        if(flag == 1)
        printf("%d ", i);
    }
    printf("\n境界1试除总次数:%d", count);
    return 0;
}

代码结果运行图: 

由境界1求解100~200之间的素数,需要试除3292次!!!可见其算法效率如何啦。

试除法境界2

境界2实现思路分析: 

境界2源码: 

#include<stdio.h>
int main()
{
    
    int count = 0;//记录试除次数
    int i = 0;
    int j = 0;
    for (i = 101; i < 200; i+=2)//提前排除100到200之间的偶数,符合这个条件一定不是素数。
    {
        int flag = 1;//flag最终结果为1,表示i是素数,为0表示不是素数。
        for (j = 2; j < i; j++)
        {
            count++;
            if (i % j == 0)
            {
                flag = 0;
                break;
            }

        }
        if(flag == 1)
        printf("%d ", i);
    }
    printf("\n境界2试除总次数:%d", count);
    return 0;
}

代码结果运行图: 

由境界2求解100~200之间的素数,需要试除3241次,稍微比境界1好那么一丢丢啦!但是其算法效率还是不尽人意。

试除法境界3

境界3实现思路分析:

境界3源码: 

#include<stdio.h>
#include<math.h>
int main()
{

	int count = 0;//记录试除次数
	int i = 0;
	int j = 0;
	for (i = 100; i <= 200; i++)
	{
		int flag = 1;//flag最终结果为1,表示i是素数,为0表示不是素数。
		for (j = 2; j <= sqrt(i); j++)//只需要试除2到sqrt(i)之间的整数即可
		{
			count++;
			if (i % j == 0)
			{
				flag = 0;
				break;
			}

		}
		if (flag == 1)
			printf("%d ", i);
	}
	printf("\n境界3试除总次数:%d", count);
	return 0;
}

代码结果运行图: 

由境界4求解100~200之间的素数,只需要试除393次,相比于境界1和境界2的算法效率来说,已经有长足的改进啦!

试除法境界4

境界4实现思路分析:

境界4源码: 

#include<stdio.h>
#include<math.h>
int main()
{

	int count = 0;//记录试除次数
	int i = 0;
	int j = 0;
	for (i = 101; i < 200; i += 2)//排除100到200之间的2的倍数,符合这个条件一定不是素数。
	{
		int flag = 1;//flag最终结果为1,表示i是素数,为0表示不是素数。
		for (j = 2; j <= sqrt(i); j++)//只需要试除2到sqrt(i)之间的整数即可
		{
			count++;
			if (i % j == 0)
			{
				flag = 0;
				break;
			}

		}
		if (flag == 1)
			printf("%d ", i);
	}
	printf("\n境界4试除总次数:%d", count);
	return 0;
}

代码结果运行图: 

由境界4求解100~200之间的素数,试除总次数为342,是,综合考虑了境界2和境界3的改良思想,已经达到了试除法的最高境界啦!

C语言详解《筛选法》求解素数

预备小知识

埃拉托色尼是一名古希腊的地理学家,他是世界上第一个计算出地球周长的人。埃拉托色尼素数筛选法可以很快速的计算出1到N之间的所有素数。埃拉托色尼素数筛选法大概的计算思路是:将n开根号,即N^0.5 ,去掉2到N^0.5中所有素数的倍数,剩下的数便都是素数了。例如求1到25中的素数有哪些,第一步是将25开根号,得到5;第二步将2到5的素数取出来,分别是2、3、5:再将2到25中且是2、3、5的倍数的数去掉,即去掉4、6、8、9、10、12、14、15、16、18、 20、21、22、24、25;剩下2、3、5、7、11、13、17、19便是1到25中的所有素数了。从上面我们可以看出筛选法和试除法其实有着本质上的区别,试除法是判断每一个数是不是素数来达到目的;而筛选法不是如此,筛选法是将不是素数的数全部去除,然后得到余下的数来达到目的~

境界5(基础筛选法)实现思路分析:

筛选法境界5

境界5源码: 

#include<stdio.h>
int main()
{
    int i = 0;
    int j = 0;
    int arr[100];
    int count = 0;
    for (i = 0; i < 100; i++)
    {
        arr[i] = 100 + i;//将数组先初始化存储100到199。
                        //没有存储200也没关系,200一定不是素数
        
    }
    for (i = 0; i < 100; i++)
    {
        j = i + 1;
        while (j > 1)
        {
            count++;
            if (arr[i] % j == 0)
                arr[i] = 0;
            j = j - 1;
        }
    }
    for (j = 1; j < 100; j++)
    {
        if (arr[j] != 0)
        {
            printf("%d ", arr[j]);
        }
    }
    return 0;
}

代码结果运行图: 

加载全部内容

相关教程
猜你喜欢
用户评论