亲宝软件园·资讯

展开

JVM进程缓存Caffeine的使用

心潮的滴滴 人气:0

一、前言

Caffeine是当前最优秀的内存缓存框架,不论读还是写的效率都远高于其他缓存,而且在Spring5开始的默认缓存实现就将Caffeine代替原来的Google Guava

二、基本使用

<dependency>
    <groupId>com.github.ben-manes.caffeine</groupId>
    <artifactId>caffeine</artifactId>
</dependency>

2.1 手动创建缓存

void test1() {
    Cache<Object, Object> cache = Caffeine.newBuilder()
            // 初始数量
            .initialCapacity(10)
            // 最大条数
            .maximumSize(10)
            // expireAfterWrite和expireAfterAccess同时存在时,以expireAfterWrite为准
            // 最后一次写操作后经过指定时间过期
            .expireAfterWrite(1, TimeUnit.SECONDS)
            // 最后一次读或写操作后经过指定时间过期
            .expireAfterAccess(1, TimeUnit.SECONDS)
            // 监听缓存被移除
            .removalListener((key, value, cause) -> {})
            // 记录命中
            .recordStats()
            .build();
    cache.put("1", "张三");
    System.out.println(cache.asMap());
    System.out.println(cache.getIfPresent("1"));
    System.out.println(cache.get("2", o -> "默认值"));
}

运行结果

{1=张三}
张三
默认值

2.2 异步获取缓存

@Test
void test2() {
    AsyncLoadingCache<String, String> asyncLoadingCache = Caffeine.newBuilder()
            // 创建缓存或者最近一次更新缓存后经过指定时间间隔刷新缓存:仅支持LoadingCache
            .refreshAfterWrite(1, TimeUnit.SECONDS)
            .expireAfterWrite(1, TimeUnit.SECONDS)
            .expireAfterAccess(1, TimeUnit.SECONDS)
            .maximumSize(10)
            // 根据key查询数据库里面的值
            .buildAsync(key -> {
                Thread.sleep(1000);
                return new Date().toString();
            });
    // 异步缓存返回的是CompletableFuture
    CompletableFuture<String> future = asyncLoadingCache.get("1");
    future.thenAccept(System.out::println);
}

2.3 记录命中数据

@Test
void test3() {
    LoadingCache<String, String> cache = Caffeine.newBuilder()
            // 创建缓存或者最近一次更新缓存后经过指定时间间隔,刷新缓存:refreshAfterWrite仅支持LoadingCache
            .refreshAfterWrite(1, TimeUnit.SECONDS)
            .expireAfterWrite(1, TimeUnit.SECONDS)
            .expireAfterAccess(1, TimeUnit.SECONDS)
            .maximumSize(10)
            // 开启记录缓存命中率等信息
            .recordStats()
            // 根据key查询数据库里面的值
            .build(key -> {
                TimeUnit.MILLISECONDS.sleep(1000);
                return new Date().toString();
            });

    cache.put("1", "小明");
    cache.get("1");

    /*
     * hitCount :命中的次数
     * missCount:未命中次数
     * requestCount:请求次数
     * hitRate:命中率
     * missRate:丢失率
     * loadSuccessCount:成功加载新值的次数
     * loadExceptionCount:失败加载新值的次数
     * totalLoadCount:总条数
     * loadExceptionRate:失败加载新值的比率
     * totalLoadTime:全部加载时间
     * evictionCount:丢失的条数
     */
    System.out.println(cache.stats());
}

会影响性能,生产环境下建议不开启

三、淘汰策略

LRU的优点:LRU相比于LFU而言性能更好一些,因为它算法相对比较简单,不需要记录访问频次,可以更好地应对突发流量;
LRU的缺点:虽然性能好一些,但是它通过历史数据来预测未来是局限的,它会认为最后到来的数据是最可能被再次访问的,从而给与它最高的优先级。有些非热点数据被访问过后,占据了高优先级,它会在缓存中占据相当长的时间,从而造成空间浪费;
LFU的优点:LRU根据访问频次访问,在大部分情况下,热点数据的频次肯定高于非热点数据,所以它的命中率非常高;
LFU的缺点:LFU算法相对比较复杂,性能比LRU差。有问题的是下面这种情况,比如前一段时间微博有个热点话题热度非常高,就比如那种可以让微博短时间停止服务的,于是赶紧缓存起来,LFU算法记录了其中热点词的访问频率,可能高达十几亿,而过后很长一段时间,这个话题已经不是热点了,新的热点也来了,但是,新热点话题的热度没办法到达十几亿,也就是说访问频次没有之前的话提高,那之前的热点就会一直占据着缓存空间,长时间无法被剔除。

3.1 4种淘汰方式与例子

Caffeine有4种缓存淘汰设置

// 缓存大小淘汰
@Test
public void maximumSizeTest() throws InterruptedException {
    Cache<Object, Object> cache = Caffeine.newBuilder()
            // 超过10个后会使用W-TinyLFU算法进行淘汰
            .maximumSize(10)
            .build();
    for (int i = 1; i <= 10; i++) {
        cache.put(i, i);
    }
    // 缓存淘汰是异步的
    TimeUnit.MILLISECONDS.sleep(500);
    // 打印还没有被淘汰的缓存
    System.out.println(cache.asMap());
}

// 权重淘汰
@Test
public void maximumWeightTest() throws InterruptedException {
    Cache<Integer, Integer> cache = Caffeine.newBuilder()
            // 限制总权值,若所有缓存的权重加起来>总权重就会淘汰权重小的缓存
            .maximumWeight(100)
            .weigher((Weigher<Integer, Integer>) (key, value) -> key)
            .build();
    // 总权重其实是=所有缓存的权重加起来
    int maximumWeight = 0;
    for (int i = 1; i < 20; i++) {
        cache.put(i, i);
        maximumWeight += i;
        System.out.println("i = " + i + ", maximumWeight = " + maximumWeight);
    }
    System.out.println("总权重 = " + maximumWeight);
    // 缓存淘汰是异步的
    TimeUnit.MILLISECONDS.sleep(500);
    // 打印还没有被淘汰的缓存
    System.out.println(cache.asMap());
}

// 访问后到期(每次访问都会重置时间,也就是说如果一直被访问就不会被淘汰)
@Test
void expireAfterAccessTest() throws InterruptedException {
    Cache<Object, Object> cache = Caffeine.newBuilder()
            .expireAfterAccess(1, TimeUnit.SECONDS)
            // 可以指定调度程序来及时删除过期缓存项,而不是等待Caffeine触发定期维护
            // 若不设置scheduler,则缓存会在下一次调用get的时候才会被动删除
            .scheduler(Scheduler.systemScheduler())
            .build();
    cache.put(1, 2);
    System.out.println(cache.getIfPresent(1));
    Thread.sleep(3000);
    System.out.println(cache.getIfPresent(1));
}

// 写入后到期
@Test
void expireAfterWriteTest() throws InterruptedException {
    Cache<Object, Object> cache = Caffeine.newBuilder()
            .expireAfterWrite(1, TimeUnit.SECONDS)
            // 可以指定调度程序来及时删除过期缓存项,而不是等待Caffeine触发定期维护
            // 若不设置scheduler,则缓存会在下一次调用get的时候才会被动删除
            .scheduler(Scheduler.systemScheduler())
            .build();
    cache.put(1, 2);
    TimeUnit.MILLISECONDS.sleep(3000);
    System.out.println(cache.getIfPresent(1));
}

另外还有一个refreshAfterWrite()表示x秒后自动刷新缓存可以配合以上的策略使用

// 另外还有一个refreshAfterWrite()表示x秒后自动刷新缓存可以配合以上的策略使用
    private static int num = 0;
@Test
void refreshAfterWriteTest() throws InterruptedException {
    LoadingCache<Object, Integer> cache = Caffeine.newBuilder()
            .refreshAfterWrite(1, TimeUnit.SECONDS)
            .build(integer -> ++num);

    // 获取ID=1的值,由于缓存里还没有,所以会自动放入缓存
    System.out.println(cache.get(1));

    // 延迟2秒后,理论上自动刷新缓存后取到的值是2
    // 但其实不是,值还是1,因为refreshAfterWrite并不是设置了n秒后重新获取就会自动刷新
    // 而是x秒后&&第二次调用getIfPresent的时候才会被动刷新
    Thread.sleep(2000);
    System.out.println(cache.getIfPresent(1));// 1

    //此时才会刷新缓存,而第一次拿到的还是旧值
    System.out.println(cache.getIfPresent(1));// 2
}

3.2 最佳实践

实践1

实践2

四、配合Redis做二级缓存

缓存的解决方案一般有三种:

加载全部内容

相关教程
猜你喜欢
用户评论