如何使用bindgen将C语言头文件转换为Rust接口代码
塵觴葉 人气:0Rust语言调用C语言接口
嵌入式系统层及应用层的软件开发,离不开C语言。笔者希望使用一种高效、稳定的开发语言,在一定程度上替代C语言,从而提高开发效率、降低嵌入式软件的扩展、维护成本,同时缩小研发团队规模。Rust编程语言很好地满足了高效、稳定这两个要求。不过需要在一定程度解决Rust
调用外部C语言模块的问题:Rust
语言已提供了完善的解决方案,笔者希望通过本文做一个必要的记录。
笔者在之前一篇文章中简要介绍了Rust语言调用C语言动态库提供的函数的一般方法。不过随着Rust
工程依赖的外部的C语言模块越来越来复杂,手工将C语言头文件定义的调用接口转换为Rust
接口代码变得不具可操作性。幸运的是,一个名为bindgen的开源项目很好地解决了这个问题,它通过clang编译器库对C语言的头文件进行预处理,并生成相应的Rust
接口代码;本文参考了其官方文档,结合笔者的开发需要作简要的使用说明。
Rust语言将字符串转换为整型
笔者在实际开发过程,需要将Rust
的一个字符串类型转换为整型,Rust
柡准库已经提供了相应的转换函数parse:
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where F: FromStr, ... let four: u32 = "4".parse().unwrap(); assert_eq!(4, four);
不过,parse
函数的缺陷是,它要求输入的字符串是十进制的,对于"0x1234"
之类的非十六进制数,则不能正确处理。然而,柡准库也提供了另一个函数from_str_radix,可指定任意仍意进制的字符串到整型:
pub fn from_str_radix(src: &str, radix: u32) -> Result<i64, ParseIntError> ... assert_eq!(i64::from_str_radix("A", 16), Ok(10));
结合这两个柡准库提供的函数,就可以编写一个纯粹的Rust
函数,根据字符串的前缀决定调用哪一个转换函数了。不过笔者是怀旧的,希望继续调用C语言柡准库提供的函数strtoll/strtoull
,这两个函数可以自动判断字符串的进制(尽管仅限于几个进制)。
笔者为Rust
工程编写的代码如下(完整代码可参考此处):
/* extmodule/extmodule.h */ #ifndef RUST_EXTMODULE_H #define RUST_EXTMODULE_H 1 int extm_strtol(const char * strp, long long * valp, int base); int extm_strtoul(const char * strp, unsigned long long * valp, int base); #endif /* extmodule/extmodule.c */ #include <errno.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include <time.h> int extm_strtol(const char * strp, long long * valp, int base) { long long ret; int error = EINVAL; char * strend = NULL; if (strp == NULL) return error; errno = 0; ret = strtoll(strp, &strend, base); error = errno; if (error || strend == strp) return (error > 0) ? error : EINVAL; if (valp != NULL) *valp = ret; return 0; } int extm_strtoul(const char * strp, unsigned long long * valp, int base) { int error = EINVAL; char * strend = NULL; unsigned long long ret; if (strp == NULL) return error; errno = 0; ret = strtoull(strp, &strend, base); error = errno; if (error || strend == strp) return (error > 0) ? error : EINVAL; if (valp != NULL) *valp = ret; return 0; }
之后,笔者对这两个函数extm_strtol/extm_strtoul
进一步封装:
// src/lib.rs #![allow(non_snake_case)] #![allow(non_camel_case_types)] #![allow(non_upper_case_globals)] use std::os::raw::c_int; use std::os::raw::c_longlong; use std::os::raw::c_ulonglong; include!(concat!(env!("OUT_DIR"), "/bindings.rs")); pub fn strtol(x: &str, base: i32) -> Result<i64, std::io::Error> { let mut res: c_longlong = 0; let y: Vec<u8> = x.as_bytes().iter().cloned().collect(); let error = unsafe { let z = std::ffi::CString::from_vec_unchecked(y); extm_strtol(z.as_ptr(), &mut res as *mut c_longlong, base as c_int) }; match error { 0 => Ok(res as i64), _ => Err(std::io::Error::from_raw_os_error(error as i32)), } } pub fn strtoul(x: &str, base: i32) -> Result<u64, std::io::Error> { let mut res: c_ulonglong = 0; let y: Vec<u8> = x.as_bytes().iter().cloned().collect(); let error = unsafe { let z = std::ffi::CString::from_vec_unchecked(y); extm_strtoul(z.as_ptr(), &mut res as *mut c_ulonglong, base as c_int) }; match error { 0 => Ok(res as u64), _ => Err(std::io::Error::from_raw_os_error(error as i32)), } }
这样,笔者就得到了两个Rust
语言版本的字符串到整型的转换函数,strtol/strtoul
。接下来就要解决编译的问题,即将extmodule/extmodule.h
头文件转换为src/lib.rs
包含的接口文件,bindings.rs
:
include!(concat!(env!("OUT_DIR"), "/bindings.rs"));
此外还要求在为嵌入式设备编译构建时,也能够交叉编译extmodule
模块。
编写build.rs自动化编译外部模块
笔者参考了bindgen的相关文档,调用相关的binding
接口,将extmodule/extmodule.h
转换为$(OUT_DIR)
目录下的bindings.rs
接口代码;之后又调用了make命令行工具,实现extmodule
的(交叉)编译,生成libextm.so
动态库:
extern crate bindgen; use std::process::Command; fn main() { // generate binding.rs for extmodule let bindings = bindgen::Builder::default() .header("extmodule/extmodule.h") .parse_callbacks(Box::new(bindgen::CargoCallbacks)) .generate() .expect("Unable to generate bindings"); let out_path = std::path::PathBuf::from(std::env::var("OUT_DIR").unwrap()); bindings.write_to_file(out_path.join("bindings.rs")) .expect("Couldn't write bindings!"); // invoke make to build external C module let cc = format!("CC={}", std::env::var("TARGET_CC") .unwrap_or_else(|_| "cc".to_string())); let cflags = format!("CFLAGS={}", std::env::var("TARGET_CFLAGS") .unwrap_or_else(|_| "-Wall -fPIC -D_GNU_SOURCE -Os -ggdb".to_string())); let okay = Command::new("make") .arg(AsRef::<std::ffi::OsStr>::as_ref(&cc)) .arg(AsRef::<std::ffi::OsStr>::as_ref(&cflags)) .args(&["-C", "./extmodule", "-j1", "clean", "all"]) .spawn() .expect("Failed to invoke make utility") .wait() .expect("Failed to wait make utility") .success(); if !okay { eprintln!("Error, make for external C module has failed!"); std::process::exit(1); } println!("cargo:rustc-link-lib=extm"); println!("cargo:rustc-link-search=./extmodule"); println!("cargo:rerun-if-changed=./extmodule/extmodule.h"); println!("cargo:rustc-link-arg-bins=-Wl,-rpath=$ORIGIN"); }
在编译之前,需要为系统安装clang
相关的依赖,这是bindgen
需要的:
sudo apt install clang-14 libclang-14-dev # for ubuntu-22.04
笔者编译、运行bindings
工程的输出结果如下:
yejq@ubuntu:~/program/bindings$ cargo build --release
Compiling bindings v0.1.0 (/home/yejq/program/bindings)
Finished release [optimized] target(s) in 0.73s
yejq@ubuntu:~/program/bindings$ cp -v ./extmodule/libextm.so ./target/release/
'./extmodule/libextm.so' -> './target/release/libextm.so'
yejq@ubuntu:~/program/bindings$ ./target/release/bindings 2099 0x2030
arg0: 2099, arg1: 0x2030
System uptime: 86910
total 0
lrwx------ 1 yejq yejq 64 1月 25 11:35 0 -> /dev/pts/11
lrwx------ 1 yejq yejq 64 1月 25 11:35 1 -> /dev/pts/11
lrwx------ 1 yejq yejq 64 1月 25 11:35 2 -> /dev/pts/11
lr-x------ 1 yejq yejq 64 1月 25 11:35 3 -> /dev/null
lr-x------ 1 yejq yejq 64 1月 25 11:35 4 -> /proc/17644/fd
total 0
lrwx------ 1 yejq yejq 64 1月 25 11:35 0 -> /dev/pts/11
lrwx------ 1 yejq yejq 64 1月 25 11:35 1 -> /dev/pts/11
lrwx------ 1 yejq yejq 64 1月 25 11:35 2 -> /dev/pts/11
lr-x------ 1 yejq yejq 64 1月 25 11:35 3 -> /proc/17645/fd
可以看到,使用extmodule
外部模块,可以很好地解决十六进制字符串0x2030
转换为整型的问题。
使用bindgen
命令行工具转换接口文件
Rust
语言、工具链开发者选择Rust
作为自定义编译构建的语言,相应的代码为工作根目录下的build.rs
。该代码依赖了bindgen
库,将extmodule/extmodule.h
转化为Rust
编程语言的接口文件,这一依赖在Cargo.toml
需要指明:
[dependencies] [build-dependencies] bindgen = "0.62.0"
有人可能会提议,使用build.rs
作为自定义编译构建代码,可能不太方便,因为某些工程不产生以上依赖,而是使用bindgen命令行工具实现以上C语言头文件到bindings.rs
接口的转换,那么使用shell
脚本就更合理。例如build.rs.sh
脚本实现了目前的build.rs
所有功能:
#!/bin/bash # Created by yejq.jiaqiang@gmail.com # Simple build script for bindtest # 2023/01/24 # generate bindings.rs source file in `$(OUT_DIR) directory generate_bindings() { if [ ! -d "${OUT_DIR}" ] ; then echo "Error, \`\${OUT_DIR} not found." 1>&2 return 1 fi bindgen -o "${OUT_DIR}/bindings.rs" 'extmodule/extmodule.h' return $? } compile_extmodule() { local COMPILER="${TARGET_CC:-gcc}" local C_FLAGS="${TARGET_CFLAGS:--Wall -fPIC -Os -D_GNU_SOURCE -ggdb}" make "CC=${COMPILER}" "CFLAGS=${C_FLAGS}" -C extmodule -j1 clean all return $? } define_rustc_flags() { echo "cargo:rustc-link-lib=extm" echo "cargo:rustc-link-search=./extmodule" echo "cargo:rerun-if-changed=./build.rs.sh" echo "cargo:rerun-if-changed=./extmodule/extmodule.h" echo "cargo:rustc-link-arg-bins=-Wl,-rpath=\$ORIGIN" return 0 } generate_bindings || exit $? compile_extmodule || exit $? define_rustc_flags ; exit 0
该脚本,即简洁,又具备很强的扩展性,修改起来又比build.rs
方便很多;确实是这样。那么可以修改build.rs
脚本,实现对该脚本的一劳永逸的调用:
diff --git a/Cargo.toml b/Cargo.toml index a57c279..3b947ae 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -8,4 +8,4 @@ edition = "2021" [dependencies] [build-dependencies] -bindgen = "0.62.0" +libc = { version = "0.2.139" } diff --git a/build.rs b/build.rs index 6a2fff1..dddf1f8 100644 --- a/build.rs +++ b/build.rs @@ -1,38 +1,17 @@ -extern crate bindgen; -use std::process::Command; +use std::ffi::CString; +use libc::{c_char, execv}; +use std::collections::VecDeque; fn main() { - // generate binding.rs for extmodule - let bindings = bindgen::Builder::default() - .header("extmodule/extmodule.h") - .parse_callbacks(Box::new(bindgen::CargoCallbacks)) - .generate() - .expect("Unable to generate bindings"); - let out_path = std::path::PathBuf::from(std::env::var("OUT_DIR").unwrap()); - bindings.write_to_file(out_path.join("bindings.rs")) - .expect("Couldn't write bindings!"); - - // invoke make to build external C module - let cc = format!("CC={}", std::env::var("TARGET_CC") - .unwrap_or_else(|_| "cc".to_string())); - let cflags = format!("CFLAGS={}", std::env::var("TARGET_CFLAGS") - .unwrap_or_else(|_| "-Wall -fPIC -D_GNU_SOURCE -Os -ggdb".to_string())); - let okay = Command::new("make") - .arg(AsRef::<std::ffi::OsStr>::as_ref(&cc)) - .arg(AsRef::<std::ffi::OsStr>::as_ref(&cflags)) - .args(&["-C", "./extmodule", "-j1", "clean", "all"]) - .spawn() - .expect("Failed to invoke make utility") - .wait() - .expect("Failed to wait make utility") - .success(); - if !okay { - eprintln!("Error, make for external C module has failed!"); - std::process::exit(1); - } - - println!("cargo:rustc-link-lib=extm"); - println!("cargo:rustc-link-search=./extmodule"); - println!("cargo:rerun-if-changed=./extmodule/extmodule.h"); - println!("cargo:rustc-link-arg-bins=-Wl,-rpath=$ORIGIN"); + // invoke build.rs.sh script instead + let argv: Vec<String> = std::env::args().skip(1).collect(); + let mut argw: VecDeque<CString> = argv.iter() + .map(|x| CString::new(x.as_bytes()).unwrap()).collect(); + argw.push_front(CString::new("./build.rs.sh").unwrap()); + let mut argx: Vec<*const c_char> = argw.iter().map(|y| y.as_ptr()).collect(); + argx.push(std::ptr::null()); + unsafe { execv(argx[0], argx.as_mut_ptr()) }; + eprintln!("Error, failed to invoke ./build.rs.sh: {:?}", + std::io::Error::last_os_error()); + std::process::exit(1); }
简单的C语言头文件
以上的编译构建,考虑到了对嵌入式设备支持。主要是在build.rs
(或build.rs.sh
)访问TARGET_CC
/TARGET_CFLAGS
两个与交叉编译相关的环境变量。不过,值得说明的是,对于简单的C语言头文件(例如笔者编写的extmodule/extmodule.h
)可以这样转换,但对于复杂的开源库,交叉编译时,因其头文件比较复杂,这种基于bindgen
的接口转换常常是不可用的。举个例子,对于开源的paho.mqtt.rust软件,因其依赖了paho.mqtt.c
库,在交叉编译时,就会使用该工程自己维护的bindings
接口代码,而不是使用bindgen
来转换:
yejq@ubuntu:~/program/paho.mqtt.rust/paho-mqtt-sys/bindings$ ls -lh total 1.7M -rw-rw-r-- 1 ubuntu ubuntu 267K Jan 25 11:36 bindings_paho_mqtt_c_1.3.12-aarch64-unknown-linux-gnu.rs -rw-rw-r-- 1 ubuntu ubuntu 216K Jan 25 11:36 bindings_paho_mqtt_c_1.3.12-armv7-unknown-linux-gnueabihf.rs -rw-rw-r-- 1 ubuntu ubuntu 216K Jan 25 11:36 bindings_paho_mqtt_c_1.3.12-default-32.rs -rw-rw-r-- 1 ubuntu ubuntu 265K Jan 25 11:36 bindings_paho_mqtt_c_1.3.12-default-64.rs -rw-rw-r-- 1 ubuntu ubuntu 281K Jan 25 11:36 bindings_paho_mqtt_c_1.3.12-x86_64-apple-darwin.rs -rw-rw-r-- 1 ubuntu ubuntu 211K Jan 25 11:36 bindings_paho_mqtt_c_1.3.12-x86_64-pc-windows-msvc.rs -rw-rw-r-- 1 ubuntu ubuntu 265K Jan 25 11:36 bindings_paho_mqtt_c_1.3.12-x86_64-unknown-linux-gnu.rs drwxrwxr-x 2 ubuntu ubuntu 4.0K Jan 25 11:36 old
虽然如此,我们在嵌入式软件开发时,可以编写易于转换的C语言头文件,这就需要我们在实际开发中不断调整头文件的编写。
加载全部内容