Java AQS中ReentrantLock条件锁的使用
飞奔的小付 人气:0一.什么是AQS
1.定义
java.util.concurrent包中的大多数同步器实现都是围绕着共同的基础行为,比如等待队列、条件队列、独占获取、共享获取等,而这些行为的抽象就是基于AbstractQueuedSynchronizer(简称AQS)实现的,AQS是一个抽象同步框架,可以用来实现一个依赖状态的同步器。
JDK中提供的大多数的同步器如Lock, Latch, Barrier等,都是基于AQS框架来实现的。
- 一般都是通过一个内部类sync继承AQS
- 将同步器所有调用都同步到Sync对应的方法
2.特性
- 阻塞等待队列
- 共享/独占
- 公平/非公平
- 可重入
- 允许中断
3.属性
内部维护属性volatile int state,表示资源的可用状态
- getState()
- setState()
- compareAndSetState()
4.资源共享方式
- Exclusive-独占,只有一个线程能执行,如ReentrantLock
- Share-共享,多个线程可以同时执行,如Semaphore/CountDownLatch
5.两种队列
- 同步等待队列: 主要用于维护获取锁失败时入队的线程
- 条件等待队列: 调用await()的时候会释放锁,然后线程会加入到条件队列,调用signal()唤醒的时候会把条件队列中的线程节点移动到同步队列中,等待再次获得锁
6.队列节点状态
- 值为0,初始化状态,表示当前节点在sync队列中,等待着获取锁。
- CANCELLED,值为1,表示当前的线程被取消;
- SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,也就是unpark;
- CONDITION,值为-2,表示当前节点在等待condition,也就是在condition队列中;
- PROPAGATE,值为-3,表示当前场景下后续的acquireShared能够得以执行;
7.实现方法
自定义同步器实现时主要实现以下几种方法:
- isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
- tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
- tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
- tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
- tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。
二.等待队列
1.同步等待队列
AQS当中的同步等待队列也称CLH队列,CLH队列是Craig、Landin、Hagersten三人发明的一种基于双向链表数据结构的队列,是FIFO先进先出线程等待队列,Java中的CLH队列是原CLH队列的一个变种,线程由原自旋机制改为阻塞机制。
AQS 依赖CLH同步队列来完成同步状态的管理:
- 当前线程如果获取同步状态失败时,AQS则会将当前线程已经等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程
- 当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态。
- 通过signal或signalAll将条件队列中的节点转移到同步队列。(由条件队列转化为同步队列)
2.条件等待队列
AQS中条件队列是使用单向列表保存的,用nextWaiter来连接:
- 调用await方法阻塞线程;
- 当前线程存在于同步队列的头结点,调用await方法进行阻塞(从同步队列转化到条件队列)
三.condition接口
- 调用Condition#await方法会释放当前持有的锁,然后阻塞当前线程,同时向Condition队列尾部添加一个节点,所以调用Condition#await方法的时候必须持有锁。
- 调用Condition#signal方法会将Condition队列的首节点移动到阻塞队列尾部,然后唤醒因调用Condition#await方法而阻塞的线程(唤醒之后这个线程就可以去竞争锁了),所以调用Condition#signal方法的时候必须持有锁,持有锁的线程唤醒被因调用Condition#await方法而阻塞的线程。
public static void main(String[] args) { Lock lock = new ReentrantLock(); Condition condition = lock.newCondition(); new Thread(() -> { lock.lock(); try { log.debug(Thread.currentThread().getName() + " 开始处理任务"); //会释放当前持有的锁,然后阻塞当前线程 condition.await(); log.debug(Thread.currentThread().getName() + " 结束处理任务"); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } }).start(); new Thread(() -> { lock.lock(); try { log.debug(Thread.currentThread().getName() + " 开始处理任务"); Thread.sleep(2000); //唤醒因调用Condition#await方法而阻塞的线程 condition.signal(); log.debug(Thread.currentThread().getName() + " 结束处理任务"); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } }).start(); }
Thread-0 开始处理任务
Thread-1 开始处理任务
Thread-1 结束处理任务
Thread-0 结束处理任务
四.ReentrantLock
1.ReentrantLock是什么
ReentrantLock是一种基于AQS框架的应用实现,是JDK中的一种线程并发访问的同步手段,它的功能类似于synchronized是一种互斥锁,可以保证线程安全。
2.特点
- 可中断
- 可以设置超时时间
- 可以设置为公平锁
- 支持多个条件变量
- 与 synchronized 一样,都支持可重入
3. ReentrantLock和synchronized的区别
- synchronized是JVM层次的锁实现,ReentrantLock是JDK层次的锁实现;
- synchronized的锁状态是无法在代码中直接判断的,但是ReentrantLock可以通过ReentrantLock#isLocked判断;
- synchronized是非公平锁,ReentrantLock可以是公平也可以是非公平的,默认是非公平的;
- synchronized是不可以被中断的,而ReentrantLock#lockInterruptibly方法是可以被中断的;
- 在发生异常时synchronized会自动释放锁,而ReentrantLock需要开发者在finally块中显示释放锁;
- ReentrantLock获取锁的形式有多种:如立即返回是否成功的tryLock(),以及等待指定时长的获取,更加灵活;
- synchronized在特定的情况下对于已经在等待的线程是后来的线程先获得锁(回顾一下sychronized的唤醒策略),而ReentrantLock对于已经在等待的线程是先来的线程先获得锁;
4. ReentrantLock的使用
伪代码:
ReentrantLock lock = new ReentrantLock(); //参数默认false,不公平锁 ReentrantLock lock = new ReentrantLock(true); //公平锁 //加锁 lock.lock(); try { //临界区 } finally { // 解锁 lock.unlock();
例子:基本使用
private static int sum = 0; private static Lock lock = new ReentrantLock(); public static void main(String[] args) throws InterruptedException { for (int i = 0; i < 3; i++) { Thread thread = new Thread(()->{ //加锁 一般写在try前面 lock.lock(); try { // 临界区代码 业务逻辑 for (int j = 0; j < 10000; j++) { sum++; } } finally { // 解锁 lock.unlock(); } }); thread.start(); } Thread.sleep(2000); System.out.println(sum); }
30000
可重入
public static ReentrantLock lock = new ReentrantLock(); public static void main(String[] args) { method1(); } public static void method1() { lock.lock(); try { log.debug("execute method1"); method2(); } finally { lock.unlock(); } } public static void method2() { lock.lock(); try { log.debug("execute method2"); method3(); } finally { lock.unlock(); } } public static void method3() { lock.lock(); try { log.debug("execute method3"); } finally { lock.unlock(); } }
execute method1
execute method2
execute method3
可中断
public static void main(String[] args) throws InterruptedException { ReentrantLock lock = new ReentrantLock(); Thread t1 = new Thread(() -> { log.debug("t1启动..."); try { lock.lockInterruptibly(); try { log.debug("t1获得了锁"); } finally { lock.unlock(); } } catch (InterruptedException e) { e.printStackTrace(); log.debug("t1等锁的过程中被中断"); } }, "t1"); lock.lock(); try { log.debug("main线程获得了锁"); t1.start(); //先让线程t1执行 Thread.sleep(1000); t1.interrupt(); log.debug("线程t1执行中断"); } finally { lock.unlock(); } }
main线程获得了锁
t1启动…
线程t1执行中断
t1等锁的过程中被中断
锁超时
public static void main(String[] args) throws InterruptedException { ReentrantLock lock = new ReentrantLock(); Thread t1 = new Thread(() -> { log.debug("t1启动..."); try { //if (!lock.tryLock()) { // log.debug("t1获取锁失败,立即返回false"); // return; //} if (!lock.tryLock(1, TimeUnit.SECONDS)) { log.debug("等待 1s 后获取锁失败,返回"); return; } } catch (Exception e) { e.printStackTrace(); return; } try { log.debug("t1获得了锁"); } finally { lock.unlock(); } }, "t1"); lock.lock(); try { log.debug("main线程获得了锁"); t1.start(); //先让线程t1执行 Thread.sleep(2000); } finally { lock.unlock(); } }
main线程获得了锁
t1启动…
等待 1s 后获取锁失败,返回
公平锁和非公平锁
public static void main(String[] args) throws InterruptedException { // ReentrantLock lock = new ReentrantLock(true); //公平锁 ReentrantLock lock = new ReentrantLock(); //非公平锁 for (int i = 0; i < 500; i++) { new Thread(() -> { lock.lock(); try { try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } log.debug(Thread.currentThread().getName() + " running..."); } finally { lock.unlock(); } }, "t" + i).start(); } // 1s 之后去争抢锁 Thread.sleep(1000); for (int i = 0; i < 500; i++) { new Thread(() -> { lock.lock(); try { log.debug(Thread.currentThread().getName() + " running..."); } finally { lock.unlock(); } }, "强行插入" + i).start(); } }
条件变量
private static ReentrantLock lock = new ReentrantLock(); private static Condition cigCon = lock.newCondition(); private static Condition takeCon = lock.newCondition(); private static boolean hashcig = false; private static boolean hastakeout = false; //送烟 public void cigratee(){ lock.lock(); try { while(!hashcig){ try { log.debug("没有烟,歇一会"); cigCon.await(); }catch (Exception e){ e.printStackTrace(); } } log.debug("有烟了,干活"); }finally { lock.unlock(); } } //送外卖 public void takeout(){ lock.lock(); try { while(!hastakeout){ try { log.debug("没有饭,歇一会"); takeCon.await(); }catch (Exception e){ e.printStackTrace(); } } log.debug("有饭了,干活"); }finally { lock.unlock(); } } public static void main(String[] args) { ReentrantLockDemo6 test = new ReentrantLockDemo6(); new Thread(() ->{ test.cigratee(); }).start(); new Thread(() -> { test.takeout(); }).start(); new Thread(() ->{ lock.lock(); try { hashcig = true; log.debug("唤醒送烟的等待线程"); cigCon.signal(); }finally { lock.unlock(); } },"t1").start(); new Thread(() ->{ lock.lock(); try { hastakeout = true; log.debug("唤醒送饭的等待线程"); takeCon.signal(); }finally { lock.unlock(); } },"t2").start(); }
没有烟,歇一会
没有饭,歇一会
唤醒送烟的等待线程
唤醒送饭的等待线程
有烟了,干活
有饭了,干活
五.源码解析
首先会调用lock方法
public void lock() { sync.lock(); }
lock会调用公平方法或者非公平的方法,默认是非公平锁方法,非公平锁则会cas尝试加锁,state是不是0,是0的话就把它改为1,并设置当前线程为独占线程,加锁成功,待下个线程进来时已经变成1,则失败阻塞。
加锁
final void lock() { // 看状态是不是0,如果是0 则改为1,加锁成功 if (compareAndSetState(0, 1)) // 并设置当前线程为独占线程 setExclusiveOwnerThread(Thread.currentThread()); else //不是0则失败阻塞 acquire(1); } protected final void setExclusiveOwnerThread(Thread thread) { exclusiveOwnerThread = thread; }
加锁失败(入队 阻塞)
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) //恢复中断标识位 selfInterrupt(); }
首先tryAcquire 又进行了一次判断,看是否能获取锁,
final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); //其他线程进来,状态值是1 if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { // 重入,将状态值+1 int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }
添加进队列
private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; //第一次tail为空 if (pred != null) { //尾插法 node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } //tail为空则在这里创建队列 enq(node); return node; }
创建队列并且入队
private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize //创建队列 if (compareAndSetHead(new Node())) // 将头节点指向前一节点的尾节点,这时候tail不为空了 tail = head; } else { //双向接口,前一节点的尾节点也指向当前节点的头节点 node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
阻塞
final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { //保证一定获取锁 //获取head节点 final Node p = node.predecessor(); //是头节点则尝试获取锁 if (p == head && tryAcquire(arg)) { //设置头节点 setHead(node); p.next = null; // help GC failed = false; return interrupted; } //获取锁失败的情况,阻塞,在for循环里,第一次shouldParkAfterFailedAcquire为false,会将其设置为-1,第二次就可以阻塞 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
是否需要阻塞,把状态设置为SIGNAL,可以被唤醒了
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus; //是-1了就可以去阻塞 if (ws == Node.SIGNAL) /* * This node has already set status asking a release * to signal it, so it can safely park. */ return true; if (ws > 0) { /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { //把节点去掉 node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ //把状态设置为SIGNAL,可以被唤醒了 compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; }
真正的阻塞方法
private final boolean parkAndCheckInterrupt() { //阻塞 LockSupport.park(this); //清除中断标识位,在加锁失败方法的后面恢复中断标识位,可能其他地方还用到这个锁标识位 return Thread.interrupted(); }
唤醒 unlock()
public void unlock() { sync.release(1); } public final boolean release(int arg) { // 尝试唤醒 if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) //唤醒阻塞的线程 unparkSuccessor(h); return true; } return false; }
protected final boolean tryRelease(int releases) { //当前状态-1 int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } //设置状态 setState(c); return free; }
在这里唤醒
private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } //后面一个节点不为空 则直接唤醒当前线程 if (s != null) LockSupport.unpark(s.thread); }
线程取消获取锁
private void cancelAcquire(Node node) { // Ignore if node doesn't exist if (node == null) return; node.thread = null; // Skip cancelled predecessors Node pred = node.prev; while (pred.waitStatus > 0) //将前一个节点干掉 node.prev = pred = pred.prev; // predNext is the apparent node to unsplice. CASes below will // fail if not, in which case, we lost race vs another cancel // or signal, so no further action is necessary. Node predNext = pred.next; // Can use unconditional write instead of CAS here. // After this atomic step, other Nodes can skip past us. // Before, we are free of interference from other threads. node.waitStatus = Node.CANCELLED; // If we are the tail, remove ourselves. if (node == tail && compareAndSetTail(node, pred)) { compareAndSetNext(pred, predNext, null); } else { // If successor needs signal, try to set pred's next-link // so it will get one. Otherwise wake it up to propagate. int ws; if (pred != head && ((ws = pred.waitStatus) == Node.SIGNAL || (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && pred.thread != null) { Node next = node.next; if (next != null && next.waitStatus <= 0) compareAndSetNext(pred, predNext, next); } else { unparkSuccessor(node); } node.next = node; // help GC } }
至此加锁、解锁、阻塞、唤醒的底层源码都梳理完了。
加载全部内容