Python基于纹理背景和聚类算法实现图像分割详解
Eastmount 人气:0一.基于纹理背景的图像分割
该部分主要讲解基于图像纹理信息(颜色)、边界信息(反差)和背景信息的图像分割算法。在OpenCV中,GrabCut算法能够有效地利用纹理信息和边界信息分割背景,提取图像目标物体。该算法是微软研究院基于图像分割和抠图的课题,它能有效地将目标图像分割提取,如图1所示[1]。
GrabCut算法原型如下所示:
mask, bgdModel, fgdModel = grabCut(img, mask, rect, bgdModel, fgdModel, iterCount[, mode])
– image表示输入图像,为8位三通道图像
– mask表示蒙板图像,输入/输出的8位单通道掩码,确定前景区域、背景区域、不确定区域。当模式设置为GC_INIT_WITH_RECT时,该掩码由函数初始化
– rect表示前景对象的矩形坐标,其基本格式为(x, y, w, h),分别为左上角坐标和宽度、高度
– bdgModel表示后台模型使用的数组,通常设置为大小为(1, 65)np.float64的数组
– fgdModel表示前台模型使用的数组,通常设置为大小为(1, 65)np.float64的数组
– iterCount表示算法运行的迭代次数
– mode是cv::GrabCutModes操作模式之一,cv2.GC_INIT_WITH_RECT 或 cv2.GC_INIT_WITH_MASK表示使用矩阵模式或蒙板模式
下面是Python的实现代码,通过调用np.zeros()函数创建掩码、fgbModel和bgModel,接着定义rect矩形范围,调用函数grabCut()实现图像分割。由于该方法会修改掩码,像素会被标记为不同的标志来指明它们是背景或前景。接着将所有的0像素和2像素点赋值为0(背景),而所有的1像素和3像素点赋值为1(前景),完整代码如下所示。
# -*- coding: utf-8 -*- # By: Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt import matplotlib #读取图像 img = cv2.imread('nv.png') #灰度化处理图像 grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #设置掩码、fgbModel、bgModel mask = np.zeros(img.shape[:2], np.uint8) bgdModel = np.zeros((1,65), np.float64) fgdModel = np.zeros((1,65), np.float64) #矩形坐标 rect = (100, 100, 500, 800) #图像分割 cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT) #设置新掩码:0和2做背景 mask2 = np.where((mask==2)|(mask==0), 0, 1).astype('uint8') #设置字体 matplotlib.rcParams['font.sans-serif']=['SimHei'] #显示原图 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.subplot(1,2,1) plt.imshow(img) plt.title('(a)原始图像') plt.xticks([]), plt.yticks([]) #使用蒙板来获取前景区域 img = img*mask2[:, :, np.newaxis] plt.subplot(1,2,2) plt.imshow(img) plt.title('(b)目标图像') plt.colorbar() plt.xticks([]), plt.yticks([]) plt.show()
输出图像如图2所示,图2(a)为原始图像,图2(b)为图像分割后提取的目标人物,但人物右部分的背景仍然存在。如何移除这些背景呢?这里需要使用自定义的掩码进行提取,读取一张灰色背景轮廓图,从而分离背景与前景,希望读者下来实现该功能。
二.基于K-Means聚类算法的区域分割
K-Means聚类是最常用的聚类算法,最初起源于信号处理,其目标是将数据点划分为K个类簇,找到每个簇的中心并使其度量最小化。该算法的最大优点是简单、便于理解,运算速度较快,缺点是只能应用于连续型数据,并且要在聚类前指定聚集的类簇数[2]。
下面是K-Means聚类算法的分析流程,步骤如下:
- 第一步,确定K值,即将数据集聚集成K个类簇或小组;
- 第二步,从数据集中随机选择K个数据点作为质心(Centroid)或数据中心;
- 第三步,分别计算每个点到每个质心之间的距离,并将每个点划分到离最近质心的小组,跟定了那个质心;
- 第四步,当每个质心都聚集了一些点后,重新定义算法选出新的质心;
- 第五步,比较新的质心和老的质心,如果新质心和老质心之间的距离小于某一个阈值,则表示重新计算的质心位置变化不大,收敛稳定,则认为聚类已经达到了期望的结果,算法终止;
- 第六步,如果新的质心和老的质心变化很大,即距离大于阈值,则继续迭代执行第三步到第五步,直到算法终止。
图29-3是对身高和体重进行聚类的算法,将数据集的人群聚集成三类。
在图像处理中,通过K-Means聚类算法可以实现图像分割、图像聚类、图像识别等操作,本小节主要用来进行图像颜色分割。假设存在一张100×100像素的灰度图像,它由10000个RGB灰度级组成,我们通过K-Means可以将这些像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,这样就能实现在不改变分辨率的情况下量化压缩图像颜色,实现图像颜色层级分割。
在OpenCV中,Kmeans()函数原型如下所示:
retval, bestLabels, centers = kmeans(data, K, bestLabels, criteria, attempts, flags[, centers])
– data表示聚类数据,最好是np.flloat32类型的N维点集
– K表示聚类类簇数
– bestLabels表示输出的整数数组,用于存储每个样本的聚类标签索引
– criteria表示算法终止条件,即最大迭代次数或所需精度。在某些迭代中,一旦每个簇中心的移动小于criteria.epsilon,算法就会停止
– attempts表示重复试验kmeans算法的次数,算法返回产生最佳紧凑性的标签
– flags表示初始中心的选择,两种方法是cv2.KMEANS_PP_CENTERS ;和cv2.KMEANS_RANDOM_CENTERS
– centers表示集群中心的输出矩阵,每个集群中心为一行数据
下面使用该方法对灰度图像颜色进行分割处理,需要注意,在进行K-Means聚类操作之前,需要将RGB像素点转换为一维的数组,再将各形式的颜色聚集在一起,形成最终的颜色分割。
# -*- coding: utf-8 -*- # By: Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt #读取原始图像灰度颜色 img = cv2.imread('scenery.png', 0) #获取图像高度、宽度 rows, cols = img.shape[:] #图像二维像素转换为一维 data = img.reshape((rows * cols, 1)) data = np.float32(data) #定义中心 (type,max_iter,epsilon) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) #设置标签 flags = cv2.KMEANS_RANDOM_CENTERS #K-Means聚类 聚集成4类 compactness, labels, centers = cv2.kmeans(data, 4, None, criteria, 10, flags) #生成最终图像 dst = labels.reshape((img.shape[0], img.shape[1])) #用来正常显示中文标签 plt.rcParams['font.sans-serif']=['SimHei'] #显示图像 titles = ['原始图像', '聚类图像'] images = [img, dst] for i in range(2): plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray'), plt.title(titles[i]) plt.xticks([]),plt.yticks([]) plt.show()
输出结果如图4所示,左边为灰度图像,右边为K-Means聚类后的图像,它将灰度级聚集成四个层级,相似的颜色或区域聚集在一起。
下面代码是对彩色的图像进行颜色分割处理,它将彩色的图像聚集成2类、4类和64类。
# -*- coding: utf-8 -*- # By: Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt #读取原始图像 img = cv2.imread('scenery.png') #图像二维像素转换为一维 data = img.reshape((-1,3)) data = np.float32(data) #定义中心 (type,max_iter,epsilon) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) #设置标签 flags = cv2.KMEANS_RANDOM_CENTERS #K-Means聚类 聚集成2类 compactness, labels2, centers2 = cv2.kmeans(data, 2, None, criteria, 10, flags) #K-Means聚类 聚集成4类 compactness, labels4, centers4 = cv2.kmeans(data, 4, None, criteria, 10, flags) #K-Means聚类 聚集成8类 compactness, labels8, centers8 = cv2.kmeans(data, 8, None, criteria, 10, flags) #K-Means聚类 聚集成16类 compactness, labels16, centers16 = cv2.kmeans(data, 16, None, criteria, 10, flags) #K-Means聚类 聚集成64类 compactness, labels64, centers64 = cv2.kmeans(data, 64, None, criteria, 10, flags) #图像转换回uint8二维类型 centers2 = np.uint8(centers2) res = centers2[labels2.flatten()] dst2 = res.reshape((img.shape)) centers4 = np.uint8(centers4) res = centers4[labels4.flatten()] dst4 = res.reshape((img.shape)) centers8 = np.uint8(centers8) res = centers8[labels8.flatten()] dst8 = res.reshape((img.shape)) centers16 = np.uint8(centers16) res = centers16[labels16.flatten()] dst16 = res.reshape((img.shape)) centers64 = np.uint8(centers64) res = centers64[labels64.flatten()] dst64 = res.reshape((img.shape)) #图像转换为RGB显示 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) dst2 = cv2.cvtColor(dst2, cv2.COLOR_BGR2RGB) dst4 = cv2.cvtColor(dst4, cv2.COLOR_BGR2RGB) dst8 = cv2.cvtColor(dst8, cv2.COLOR_BGR2RGB) dst16 = cv2.cvtColor(dst16, cv2.COLOR_BGR2RGB) dst64 = cv2.cvtColor(dst64, cv2.COLOR_BGR2RGB) #用来正常显示中文标签 plt.rcParams['font.sans-serif']=['SimHei'] #显示图像 titles = ['原始图像', '聚类图像 K=2', '聚类图像 K=4', '聚类图像 K=8', '聚类图像 K=16', '聚类图像 K=64'] images = [img, dst2, dst4, dst8, dst16, dst64] for i in range(6): plt.subplot(2,3,i+1), plt.imshow(images[i], 'gray'), plt.title(titles[i]) plt.xticks([]),plt.yticks([]) plt.show()
输出结果如图5所示,它对比了原始图像和各K-Means聚类处理后的图像。当K=2时,聚集成2种颜色;当K=4时,聚集成4种颜色;当K=8时,聚集成8种颜色;当K=16时,聚集成16种颜色;当K=64时,聚集成64种颜色。
同样,如果是人物图像显示如图6所示,比如小珞珞。
三.总结
本文主要讲解了常用的图像分割方法,包括基于纹理背景和聚类算法的图像分割方法。希望读者能结合本文知识点,围绕自己的研究领域或工程项目进行深入的学习,实现所需的图像处理。
加载全部内容