亲宝软件园·资讯

展开

Python sklearn中的K-Means聚类使用方法浅析

微小冷 人气:0

初步认识

k-means翻译过来就是K均值聚类算法,其目的是将样本分割为k个簇,而这个k则是KMeans中最重要的参数:n_clusters,默认为8。

下面做一个最简单的聚类

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
X, y = make_blobs(1500)
fig = plt.figure()
for i in range(2):
    ax = fig.add_subplot(1,2,i+1)
    y = KMeans(i+2).fit_predict(X)
    plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()

其中,y是聚类结果,其数值表示对应位置X所属类号。

效果如图所示,对于下面这组数据来说,显然最好是分为两类,但如果KMeansn_clusters设为3,那就会聚成3类。

上面调用的KMeans是一个类,sklearn中同样提供了函数形式的调用,其使用方法如下

from sklearn.cluster import k_means
cen, y, interia = k_means(X, 3)

其中,cen表示聚类后,每一类的质心;y为聚类后的标签;interia表示均方误差之和。

初值选取

KMeans最重要的概念是簇,也就是被分割后的数据种类;而每个簇都有一个非常重要的点,就是质心。在设定好簇的个数之后,也就相当于确定了质心的个数,而KMeans算法的基本流程是

重复上述2-3的操作,直到质心区域稳定或者达到最大迭代次数。

从这个流程可以看出来,KMeans算法至少有两个细节需要考虑,一个是初始化方案,另一个则是质心更新的方案。

KMeans类或者k_means函数中,提供了两种初始化质心方案,通过参数init来控制

kMeans++初始化质心的流程如下

重复步骤2和3,直到质心个数达到 k k k个。

若希望直接调用kMeans++函数,则可使用kmeans_plusplus

小批

sklearn提供了KMeans的一个变种MiniBatchKMeans,可在每次训练迭代中随机抽样,这种小批量的训练过程大大减少了运算时间。

当样本量非常巨大时,小批KMeans的优势是非常明显的

from sklearn.cluster import MiniBatchKMeans
import time
ys, xs = np.indices([4,4])*6
cens = list(zip(xs.reshape(-1), ys.reshape(-1)))
X, y = make_blobs(100000,centers=cens)
km = KMeans(16)
mbk = MiniBatchKMeans(16)
def test(func, value):
    t = time.time()
    func(value)
    print("耗时", time.time()-t)
test(km.fit_predict, X)
# 耗时 3.2028110027313232
test(mbk.fit_predict, X)
# 耗时 0.2590029239654541

可见效果非常明显,其中fit_predictpredict相似,但并没有返回值,km.fit_predict(X)运行之后,会更改km中的labels_属性,此即分类结果

fig = plt.figure()
ax = fig.add_subplot(1,2,1)
ax.scatter(X[:,0], X[:,1], c=km.labels_, 
    marker='.', alpha=0.5)
ax = fig.add_subplot(1,2,2)
ax.scatter(X[:,0], X[:,1], c=mbk.labels_, 
    marker='.', alpha=0.5)
plt.show()

效果如图所示,可见小批的KMeans算法和KMeans算法从结果上来看区别不大。

加载全部内容

相关教程
猜你喜欢
用户评论