C++容器适配
头发没有代码多 人气:0容器适配器
我们可以看出,栈中没有空间配置器(内存池),而是适配器
适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口
栈的实现
#include<vector> #include<iostream> using namespace std; namespace myspace { template<class T> class Stack { public: void push(const T& x) { _con.push_back(x); } void pop() { _con.pop_back(); } T& top() { return _con.back();//back接口访问尾部的数据 } T& top()const { return _con.back();//back接口访问尾部的数据 } bool empty() { return _con.empty(); } size_t size()const { return _con.size(); } private: vector<T> _con; }; }
此时这个栈并不是适配器,因为底层被写死了,底层是用vector实现的,如果想让它适配,加上适配器即可
此时就是适配器
list
注意队列不能用vector,编译会报错,因为不支持头删,没有pop_front
queque实现
namespace myspace { template<class T, class Container = deque<T>> class queue { public: void push(const T& x) { _con.push_back(x); } void pop() { _con.pop_front(); } T& back() { return _con.back(); } T& front() { return _con.front(); } const T& back() const { return _con.back(); } const T& front() const { return _con.front(); } bool empty() const { return _con.empty(); } size_t size() const { return _con.size(); } private: Container _con; }; }
dequeque
我们发现栈和队列都有一个dequeque
dequeque不是队列,是vector和list的结合体
1.支持任意位置的插入删除
2.支持随机访问
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:
dequeque的缺陷
vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。
与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。 但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下(中间的插入删除效率很低),
而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构
测试之后,dequeque显然效率低
void test_op() { srand(time(0)); const int N = 100000; vector<int> v; v.reserve(N); deque<int> dp; for (int i = 0; i < N; ++i) { auto e = rand(); v.push_back(e); dp.push_back(e); } int begin1 = clock(); sort(v.begin(), v.end()); int end1 = clock(); int begin2 = clock(); sort(dp.begin(), dp.end()); int end2 = clock(); printf("vector sort:%d\n", end1 - begin1); printf("deque sort:%d\n", end2 - begin2); }
优先级队列
priority_queque
优先级队列的底层是堆(二叉树的堆)
第二个参数容器适配器,第三个参数仿函数,less是大的优先级高
后面俩个参数给缺省值,测试优先级队列,默认大的优先级高
也可以用一个区间去初始化
把第三个参数改为greater,就是小的优先级高
习题
class Solution { public: int findKthLargest(vector<int>& nums, int k) { priority_queue<int> pq(nums.begin(),nums.end()); while(--k) { pq.pop(); } return pq.top(); } };
215. 数组中的第K个最大元素 - 力扣(LeetCode)
优先级队列模拟实现
namespace myspace { //大堆 template<class T,class Container=vector<T>> class priority_queque { public: template<class InputerIterator> priority_queque(InputerIterator first, InputerIterator last)//迭代器区间 { while (first < last) { _con.push_back(*first); ++first; } //建堆 for (int i = (_con.size() - 1 - 1)/2;i>=0;--i) { adjust_down(i); } } priority_queque()//默认构造,不然会报错,因为上面的迭代器区间这个函数跟构造函数同名 {} void adjust_up(size_t child) { size_t parent = (child - 1) / 2; while (child>0) { if (_con[parent] < _con[child]) { std::swap(_con[parent], _con[child]); child = parent; parent = (child - 1) / 2; } else { break; } } } void adjust_down(size_t parent) { size_t child = parent * 2 + 1; while (child < _con.size()) { if (child + 1 < _con.size() && _con[child + 1] > _con[child]) { ++child; } //选出最大的孩子 if (_con[child] > _con[parent]) { std::swap(_con[child],_con[parent]); parent = child; child = parent * 2 + 1; } else { break; } } } void push(const T& x)//(大堆)堆的插入 { _con.push_back(x); adjust_up(_con.size()-1);//尾插后向上跳转 } void pop()//删除堆顶数据 { std::swap(_con[0], _con[_con.size() - 1]); _con.pop_back(); adjust_down(0); }//对顶数据和最后一个数据交换,之后删除最后一个数据,然后向下调整堆 const T& top() { return _con[0]; } bool empty() { return _con.empty(); } size_t size()const { return _con.size(); } private: Container _con; }; } int main() { int a[]= { 156,132,156,156,31,5,15,31,364,15 }; myspace::priority_queque<int> pq(a,a+sizeof(a)/sizeof(int)); while (!pq.empty()) { cout << pq.top() << " "; pq.pop(); } return 0; }
优先级队列要控制比较大小的逻辑,上面的写法我们以大堆为例但是这样把优先级队列给写死了,如果把里面的>改为<则会变成小堆,但是这样比较麻烦。上面我们只传了俩个参数,还有一个参数没传,第三个参数是仿函数
仿函数
仿函数/函数对象——是个类,重载的是operator(),类对象可以像函数一样去使用,本质就是重载
()也是一个运算符
跟sort不同,sort传的是函数模板,传的是对象,而这里传的是类模板,传的是类型
这里的lsFunc不是函数名,而是一个类对象
这俩个等价
不仅有less,还有greater
namespace myspace { template<class T> class less { public: bool operator()(const T& l, const T& r)const { return l < r; } }; template<class T> class greater { public: bool operator()(const T& l, const T& r)const { return l > r; } }; }
我们将这里全部改成小于号
传入仿函数
这样就可以去替换小于号
小堆
大堆
完整代码
namespace myspace { //大堆 template<class T,class Container=vector<T>,class Compare=less<T>> class priority_queque { public: template<class InputerIterator> priority_queque(InputerIterator first, InputerIterator last)//迭代器区间 { while (first < last) { _con.push_back(*first); ++first; } //建堆 for (int i = (_con.size() - 1 - 1)/2;i>=0;--i) { adjust_down(i); } } priority_queque()//默认构造,不然会报错,因为上面的迭代器区间这个函数跟构造函数同名 {} Compare com; void adjust_up(size_t child) { size_t parent = (child - 1) / 2; while (child>0) { if (com(_con[parent] , _con[child])) { std::swap(_con[parent], _con[child]); child = parent; parent = (child - 1) / 2; } else { break; } } } void adjust_down(size_t parent) { size_t child = parent * 2 + 1; while (child < _con.size()) { if (child + 1 < _con.size() && com(_con[child],_con[child + 1]) ) { ++child; } //选出最大的孩子 if ( com(_con[parent],_con[child])) { std::swap(_con[child],_con[parent]); parent = child; child = parent * 2 + 1; } else { break; } } } void push(const T& x)//(大堆)堆的插入 { _con.push_back(x); adjust_up(_con.size()-1);//尾插后向上跳转 } void pop()//删除堆顶数据 { std::swap(_con[0], _con[_con.size() - 1]); _con.pop_back(); adjust_down(0); }//对顶数据和最后一个数据交换,之后删除最后一个数据,然后向下调整堆 const T& top() { return _con[0]; } bool empty() { return _con.empty(); } size_t size()const { return _con.size(); } private: Container _con; }; } namespace myspace { template<class T> class less { public: bool operator()(const T& l, const T& r)const { return l < r; } }; template<class T> class greater { public: bool operator()(const T& l, const T& r)const { return l > r; } }; } int main() { int a[]= { 156,132,156,156,31,5,15,31,364,15 }; myspace::priority_queque<int,vector<int>,less<int>> pq(a,a+sizeof(a)/sizeof(int)); while (!pq.empty()) { cout << pq.top() << " "; pq.pop(); } return 0; }
加载全部内容