亲宝软件园·资讯

展开

Golang常用包

whynogome 人气:2

sync包

常用的有3个功能

锁分为普通互斥锁和读写锁

互斥锁 Mutex读写锁 RWMutex
一个线程未释放锁时,其他线程加锁阻塞读锁:一个线程未释放读锁时,其他线程可获取读锁,获取写锁阻塞
写锁:一个线程未释放写锁时,其他线程可获取读锁或写锁都会阻塞

线程监听WaitGroup

使用场景:用于监听一组子线程是否执行完毕

使用流程代码
建立监听对象wg := new(sync.WaitGroup)
创建多个子线程并计入计数器go func1(wg)
wg.Add(1)
go func2(wg)
wg.Add(1)
线程子线程执行完毕后,减少计数器值func1(wg){wg.Done()}
监听计数器值,直到计数器值为0时,执行后面的代码wg.Wait()

池Pool

用于存放每次请求都需要实例化,且生命周期较长的对象,以减轻垃圾回收压力。

使用流程代码
建立一个池RequestPool = sync.Pool{New: func() interface{} {return &RequestHeader{}}}
从池中取一个对象RequestPool .Get()
把对象放回池中RequestPool .Put(RequestHeader)
把对象放入池之前,需要把对象中所有值都初始化

encoding/binary包

主要用来把数字转换为字节类型

单数值转换

//序列化
    var dataA uint64=6010
    var buffer bytes.Buffer
    err1 := binary.Write(&buffer, binary.BigEndian, &dataA)
    if err1!=nil{
        log.Panic(err1)
    }
    byteA:=buffer.Bytes()
    fmt.Println("序列化后:",byteA)
    //反序列化
    var dataB uint64
    var byteB []byte=byteA
    err2:=binary.Read(bytes.NewReader(byteB),binary.BigEndian,&dataB)
    if err2!=nil{
        log.Panic(err2)
    }
    fmt.Println("反序列化后:",dataB)

其中的BigEndian和LittleEndian 指定了转换的方式是 大端字节序,还是小端字节序。

所谓大端和小端节序,是指不同cpu再把数据流转换为字节时,排位位置的不同,如下

若不同计算机程序之间使用了不同节序处理同一组数据,就会造成无法解析的情况

多数值转换

指把多个数字转换到一个byte切片中

首先定义一个定长切片 s := make([]byte,10)

首先要确定转换的节序,也可以跳过该步骤

binary.LittleEndian.PutUint16(s, uint16(0))

确定完之后,就可以向s中插入数字了

start := 0
start += binary.PutUvarint(b[2:], 1198)

插入数字到切片后,会返回该数字在切片中占用的长度

若切片空间不够,则返报错

所以我们最好确定往切片中插入数字的个数,并估算每个数字占用最大占用长度

解析切片中的某个数字,要知道该数字在切片中占用的起始位置,若位置不对则无法解析出正确的数字,返回0

i,err := binary.ReadUvarint(bytes.NewReader(b[2:]))
if err==nil{
   fmt.Println(i)
}else{
   fmt.Println(err.Error())
} 		

切片中可以插入字符串,转换为数字时,只要能够从正确的位置开始解析,就会解析出正确的数字

encoding/gob包

是一个golang专属的数据序列化工具,用于序列化和反序列化数据,作用类似于json

不同的是,在反序列化时,需要有一个指定格式的变量接收值。该变量类型需要与序列化时数据类型兼容,否则反序列化失败

	type S struct{
		Field1 string
		Field2 int
    }
	func main() {
		s1 := &S{
			Field1: "Hello Gob",
			Field2: 999,
		}
		log.Println("Original value:", s1)
		buf := new(bytes.Buffer)
		err := gob.NewEncoder(buf).Encode(s1)
		if err != nil {
			log.Println("Encode:", err)
			return
		}
		s2 := &S{}
		err = gob.NewDecoder(buf).Decode(s2)
		if err != nil {
			log.Println("Decode:", err)
			return
		}
		log.Println("Decoded value:", s2)
	}

简单的数据可以使用上面代码直接加密和解密

但是当需要解密的数据是接口类型时,由于接口的特殊性,实现了接口中方法的变量可以作为值代替该方法,这导致gob不知道接口中数据的具体类型,会解密失败,如下

type Getter interface {
    Get() string
}
type Foo struct {
    Bar string
}
func (f Foo)Get() string {
    return f.Bar
}
buf := bytes.NewBuffer(nil)
// 创建一个接口变量
//接口中原值是一个get方法,因为Foo实现了get方法,所以可以最为值代替Get
g := Getter(Foo{"wazzup"})
// gob解密g时,认为g中的值是Get() 类型,但其实是Foo类型,就会报错
enc := gob.NewEncoder(buf)
enc.Encode(&g)

解决这个问题的方法就是在代码初始化时,使用 gob.Register()方法注册Foo变量

当gob解码是发现类型不对应,会从已注册的类型中查找

hash/crc32包

常用方法:

func ChecksumIEEE(data []byte) uint32

返回数据data使用IEEE多项式计算出的CRC-32校验和

可通过对比数据发送和接收时的校验和,验证数据是否被篡改

加载全部内容

相关教程
猜你喜欢
用户评论