亲宝软件园·资讯

展开

YOLOv5增加小目标检测层

加勒比海带66 人气:0

小目标检测一直以来是CV领域的难点之一,那么,YOLOv5该如何增加小目标检测层呢?

YOLOv5代码修改————针对微小目标检测

1.YOLOv5算法简介

YOLOv5主要由输入端、Backone、Neck以及Prediction四部分组成。其中:

(1) Backbone:在不同图像细粒度上聚合并形成图像特征的卷积神经网络。

(2) Neck:一系列混合和组合图像特征的网络层,并将图像特征传递到预测层。

(3) Head: 对图像特征进行预测,生成边界框和并预测类别。

检测框架:

2.原始YOLOv5模型

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

若输入图像尺寸=640X640,

# P3/8 对应的检测特征图大小为80X80,用于检测大小在8X8以上的目标。

# P4/16对应的检测特征图大小为40X40,用于检测大小在16X16以上的目标。

# P5/32对应的检测特征图大小为20X20,用于检测大小在32X32以上的目标。

3.增加小目标检测层

# parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 
# anchors
anchors:
  - [5,6, 8,14, 15,11]  #4
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
 
# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],   #160*160
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],  #80*80
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]], #40*40
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9   20*20
  ]
 
# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],  #20*20
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #40*40
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4  40*40
   [-1, 3, BottleneckCSP, [512, False]],  # 13     40*40
 
   [-1, 1, Conv, [512, 1, 1]], #40*40
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   80*80
   [-1, 3, BottleneckCSP, [512, False]],  # 17 (P3/8-small)  80*80
 
   [-1, 1, Conv, [256, 1, 1]], #18  80*80
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #19  160*160
   [[-1, 2], 1, Concat, [1]], #20 cat backbone p2  160*160
   [-1, 3, BottleneckCSP, [256, False]], #21 160*160
 
   [-1, 1, Conv, [256, 3, 2]],  #22   80*80
   [[-1, 18], 1, Concat, [1]], #23 80*80
   [-1, 3, BottleneckCSP, [256, False]], #24 80*80
 
   [-1, 1, Conv, [256, 3, 2]], #25  40*40
   [[-1, 14], 1, Concat, [1]],  # 26  cat head P4  40*40
   [-1, 3, BottleneckCSP, [512, False]],  # 27 (P4/16-medium) 40*40
 
   [-1, 1, Conv, [512, 3, 2]],  #28  20*20
   [[-1, 10], 1, Concat, [1]],  #29 cat head P5  #20*20
   [-1, 3, BottleneckCSP, [1024, False]],  # 30 (P5/32-large)  20*20
 
   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(p2, P3, P4, P5)
  ]
 

# 新增加160X160的检测特征图,用于检测4X4以上的目标。

改进后,虽然计算量和检测速度有所增加,但对小目标的检测精度有明显改善。

总结

加载全部内容

相关教程
猜你喜欢
用户评论