亲宝软件园·资讯

展开

python fmincon

赵孝正 人气:4

1. matlab 中的 fmincon() 函数

matlab 求解非线性规划

在matlab中,fmincon函数可以用于求解带约束的非线性多变量函数的最小值,即可以用来求解非线性规划问题。

基本语法

[x, fval] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)

实例

示例,求下列非线性规划:

(1)编写 M 函数 fun1.m 定义目标函数:

function f = fun1(x);
f = x(1).^2 + x(2).^2 + x(3).^2 + 8;

(2)编写 M 函数 fun2.m 定义非线性约束条件:

function [g, h] = fun2(x);
g = [-x(1).^2+x(2)-x(3).^2
    x(1)+x(2).^2+x(3).^3-20];
h = [-x(1)-x(2).^2+2
    x(2)+2*x(3).^2-3];

(3)编写主程序函数

[x, y] = fmincon('fun1', rand(3, 1), [], [], [], [], zeros(3,1), [], 'fun2')

所得结果为:

2. python中的minimize()函数

minimize函数的寻找参数

在 python 的 scipy.optimize 库中包含该函数的替代函数 minimize() ,该函数的使用与 matlab 的 fminunc 函数有些不同,下面总结下,自己在使用的过程中遇到的问题。

首先查看下该函数:

官方声明过长,我把它放在该篇博客的最后面:

# 这是其声明,我认为去查看函数的说明可以达到事半功倍的效果,千万别忽略
def minimize(fun, x0, args=(), method=None, jac=None, hess=None,
             hessp=None, bounds=None, constraints=(), tol=None,
             callback=None, options=None):

着重介一些重要参数代表什么:

fun:该参数就是 costFunction 你要去最小化的损失函数,将 costFunction 的名字传给 fun

官方给的提示:

The objective function to be minimized.
fun(x, *args) -> float
where x is an 1-D array with shape (n,) and args
is a tuple of the fixed parameters needed to completely
specify the function.

意思就是损失函数在定义时,**theta 必须为第一个参数且其shape必须为(n, )**即一维数组。在计算损失函数的时候用到的其他参数以元组的形式传入到 args 参数中(其他参数具体指 X,Y,lambda 等),最后返回损失的值,可以为数组形式,也可以为一个实数.

minimize求解约束函数最小值

1.计算 1/x+x 的最小值

# coding=utf-8
from scipy.optimize import minimize
import numpy as np
 
#demo 1
#计算 1/x+x 的最小值
 def fun(args):
     a=args
     v=lambda x:a/x[0] +x[0]
     return v
 
 if __name__ == "__main__":
     args = (1)  #a
     x0 = np.asarray((2))  # 初始猜测值
     res = minimize(fun(args), x0, method='SLSQP')
     print(res.fun)
     print(res.success)
     print(res.x)

执行结果:函数的最小值为2点多

加载全部内容

相关教程
猜你喜欢
用户评论