Python多进程访问效率低
剑客阿良_ALiang 人气:0前言
最近在解决一些算法优化的问题,为了实时性要求,必须精益求精的将资源利用率用到极致。同时对算法中一些处理进行多线程或者多进程处理。
在对代码的调试过程中,发现在进程间队列使用耗时很长,特别是图片这种比较大的数据的时候。
可以先看一下我下面的demo是不是符合你的场景。
下面还有我的解决方案。
使用进程间Queue效率问题场景
代码样例如下,模拟从两个视频读取图片帧进行处理。
#!/user/bin/env python # coding=utf-8 """ @project : csdn-pro @author : 剑客阿良_ALiang @file : test13.py @ide : PyCharm @time : 2022-09-13 10:47:35 """ import time import cv2 from multiprocessing import Queue, Process def fun1(q: Queue): cap = cv2.VideoCapture("11.mp4") a = [] while cap.isOpened(): ret, frame = cap.read() if ret: a.append(frame) if len(a) == 25: q.put(a) a = [] time.sleep(0.038) def fun2(q: Queue): cap = cv2.VideoCapture("3333333.mp4") a = [] while cap.isOpened(): ret, frame = cap.read() if ret: a.append(frame) if len(a) == 25: q.put(a) a = [] time.sleep(0.038) def fun3(q1: Queue, q2: Queue, q3: Queue): while True: st0 = time.time() a1 = q1.get() st1 = time.time() a2 = q2.get() st2 = time.time() print("{} 耗时:{} - {}".format(time.time(), st1 - st0, st2 - st1)) q3.put((a1, a2)) def fun4(q3: Queue): while True: st0 = time.time() a1, a2 = q3.get() et = time.time() print("hhhh耗时: {}".format(et - st0)) if __name__ == '__main__': q1 = Queue() q2 = Queue() q3 = Queue() p1 = Process(target=fun1, args=(q1,)) p2 = Process(target=fun2, args=(q2,)) p3 = Process(target=fun3, args=(q1, q2, q3,)) p4 = Process(target=fun4, args=(q3,)) p1.start() p2.start() p3.start() p4.start() p1.join() p2.join() p3.join() p4.join()
代码说明:
1、上面模拟每秒25帧读取图片,并传递一个25帧的图片list给到队列。
我们看一下从queue获取图片list的效率。部分执行结果如下。
1663139091.3648114 耗时:1.6036181449890137 - 0.1361703872680664
hhhh耗时: 3.0635826587677
1663139093.056612 耗时:1.5302414894104004 - 0.1615591049194336
hhhh耗时: 1.6867034435272217
1663139094.7388775 耗时:1.5256507396697998 - 0.1566147804260254
hhhh耗时: 1.6849782466888428
1663139096.36547 耗时:1.4680161476135254 - 0.15857625007629395
hhhh耗时: 1.651228427886963
1663139097.9867501 耗时:1.4417593479156494 - 0.179520845413208
hhhh耗时: 1.609663963317871
1663139099.5894623 耗时:1.4391484260559082 - 0.16356372833251953
hhhh耗时: 1.7086796760559082
1663139101.3031366 耗时:1.5481102466583252 - 0.16556406021118164
hhhh耗时: 1.657604455947876
1663139102.9448056 耗时:1.470097303390503 - 0.1715717315673828
hhhh耗时: 1.5316739082336426
1663139104.5233243 耗时:1.4139580726623535 - 0.16456055641174316
Process finished with exit code -1
可以看出我们从进程队列get数据的耗时很长,从q3中同时获取的时间如蓝色标记,远大于1秒钟。
而整体获取图片帧的效率如红色标记,间隔时间大于1秒。
采用管道模式解决
这个时间间隔没法接受,我才用multiprocessing.Pipe管道来提前输入图片。
样例代码如下:
#!/user/bin/env python # coding=utf-8 """ @project : csdn-pro @author : 剑客阿良_ALiang @file : test13.py @ide : PyCharm @time : 2022-09-13 10:47:35 """ import threading import time import cv2 from multiprocessing import Queue, Process, Pipe def fun1(pipe_in): cap = cv2.VideoCapture("11.mp4") while cap.isOpened(): ret, frame = cap.read() if ret: ret, frame = cap.read() pipe_in.send((int(time.time()), frame)) time.sleep(0.038) def fun2(pipe_in): cap = cv2.VideoCapture("3333333.mp4") while cap.isOpened(): ret, frame = cap.read() if ret: ret, frame = cap.read() pipe_in.send((int(time.time()), frame)) time.sleep(0.038) def fun3(pipe_rev1, pipe_rev2): def handle(pipe_rev1, q1): _cul = 0 a = [] while True: _t, _frame = pipe_rev1.recv() if _cul == 0: a.append(_frame) _cul = _t elif _t > _cul != 0: if len(a) != 0: q1.put(a) _cul = _t a = [] a.append(_frame) elif _t == _cul != 0: a.append(_frame) q1 = Queue() q2 = Queue() threading.Thread(target=handle, args=(pipe_rev1, q1,)).start() threading.Thread(target=handle, args=(pipe_rev2, q2,)).start() while True: if not q1.empty() and not q2.empty(): st0 = time.time() _f1 = q1.get() st1 = time.time() _f2 = q2.get() et = time.time() print("{} 耗时:{} - {}".format(time.time(), st1 - st0, et - st1)) if __name__ == '__main__': pipe_in1, pipe_out1 = Pipe() pipe_in2, pipe_out2 = Pipe() p1 = Process(target=fun1, args=(pipe_in1,)) p2 = Process(target=fun2, args=(pipe_in2,)) p3 = Process(target=fun3, args=(pipe_out1, pipe_out2,)) p1.start() p2.start() p3.start() p1.join() p2.join() p3.join()
代码说明:
1、通过两个线程不停从管道接受并写到内存的Queue里面,提前放到当前进程内存里。
看一下间隔是否稳定,部分执行结果如下
1663139886.0722673 耗时:0.003930091857910156 - 0.005983591079711914
1663139887.6837587 耗时:0.09677457809448242 - 0.09172177314758301
1663139888.472634 耗时:0.061833858489990234 - 0.05984067916870117
1663139889.5441313 耗时:0.07132482528686523 - 0.07080578804016113
1663139890.548978 耗时:0.06183457374572754 - 0.06881546974182129
1663139891.5112402 耗时:0.0637204647064209 - 0.0718080997467041
1663139892.4756596 耗时:0.06682205200195312 - 0.06978344917297363
1663139893.5788367 耗时:0.06779074668884277 - 0.07928323745727539
时间间隔还是比较稳定的。
总结
如果你遇到和我一样的场景,可以仔细观察一下进程间数据是否传输的比较慢。可以考虑和我一样的方式来解决。
加载全部内容