亲宝软件园·资讯

展开

C++模板

龟龟不断向前 人气:0

1.内容引入

​ 不知道大家是否在高中时背过英语范文模板,以下就是博主的回忆:

​ 这篇模板是一些英语比较好的老师写的。

​ 每当碰到感谢信时,我都会狂喜,尽管感谢的内容不同,地点不同,我都可以去根据模板,再根据作文分析模板的那些空对应应该填入什么。

其实呢c++中也用模板,但是这个时候,我们是写模板的人,而编译器变成了那个根据模板照葫芦画瓢的人

2.模板函数

C语言写交换函数

#include<iostream>
using namespace std;
void Swapi(int* a, int* b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}
void Swapd(double* a, double* b)
{
	double tmp = *a;
	*a = *b;
	*b = tmp;
}
//……
int main()
{
	int a = 1, b = 2;
	Swapi(&a, &b);
	double c = 1.1, d = 2.2;
	Swapd(&c, &d);
	return 0;
}

​ 要实现不同类型的交换,实参不仅要传地址,而且不同类型的函数的名字要保持不同

至于为什么会这样,大家可以去看看我的文章。解释了为什么c语言不支持函数重载:

传送门

C++写交换函数

#include<iostream>
using namespace std;
void Swap(int& x, int& y)
{
	int tmp = x;
	x = y;
	y = tmp;
}
void Swap(double& x, double& y)
{
	double tmp = x;
	x = y;
	y = tmp;
}
//……
int main()
{
	int a = 1, b = 2;
	Swap(a, b);
	double c = 1.1, d = 2.2;
	Swap(c, d);
	return 0;
}

​ C++在语法上增加了引用和函数重载,在一定程度上弥补了c语言的不足,但是上述代码明明逻辑很相似,却还是要我们去实现不同类型的代码,对于我们这种懒人来说,简直就是煎熬

​ 但是计算机他是一个任劳任怨的好铁,不来不会感到疲劳,厌倦,是一个头脑优点笨笨的但是计算能力超强的大铁块。

模板交换函数的语法及其原理

语法

#include<iostream>
using namespace std;
template <class T>
void Swap(T& x, T& y)
{
	T tmp = x;
	x = y;
	y = tmp;
}
int main()
{
	int a = 1, b = 2;
	Swap(a, b);
	double c = 1.1, d = 2.2;
	Swap(c, d);
	return 0;
}

​ 这样写交换函数是不是就轻松多了,但是我们思考以下,上述代码调用的是一个Swap函数还是两个Swap函数呢?

回顾我们说的模板,是我们写的模板,然后编译器照着模板帮我们写出了intdouble类型的交换函数。

原理

图解:

我们也可以通过调试上述代码,转到反汇编,看看调用的函数是否真的是不同的函数。

理解显示实例化和隐式实例化

我们那模板加法函数来理解

#include<iostream>
using namespace std;
T Add(const T& x,const T& y)
{
	return x + y;
}
int main()
{
	int a = 1, b = 2;
	double c = 1.1, d = 2.2;
	cout << Add(a, b) << endl;//编译器要自己推类型的是隐式实例化
	cout << Add(c, d) << endl;
	//cout << Add(a, c) << endl;//error这样的写法就错了,为难编译器了,编译器也推不出来了
	cout << Add<int>(a, c) << endl;//不需要编译器去推的是显示实例化
	cout << Add<double>(b, d) << endl;
	cout << Add(a, (int)c) << endl;
	return 0;
}

编译器要自己去推T是什么类型的,就是隐式实例化

而由我们告诉编译器T是什么类型的,就是显示实例化

关于编译器也是懒人这件事

我们来看几道模板函数的代码来看看编译器是如何做事的:

#include<iostream>
using namespace std;
int Add(int left, int right)
{
	return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{
	return left + right;
}
int main()
{
	Add(1, 2);       // 与非模板函数匹配,编译器不需要特化
	Add<int>(1, 2);  // 调用编译器特化的Add版本
	return 0;
}

​ 如果调试了上述代码就会发现,编译器第一次调用的是第一个Add函数,第二次由于我们的指定,编译器调用的是模板加法函数。

#include<iostream>
using namespace std;
int Add(int left, int right)
{
	return left + right;
}
template < class T1, class T2>
T1 Add(const T1 x,const T2 y)
{
	return x + y;
}
int main()
{
	Add(1, 2);
	Add(1, 2.0);//如果不写模板,会进行一个类型转换,再去调用第一个
	return 0;
}

3.类模板

由于c++的顺序表是用vector表示的,下面咱们的类名也用vector表示

像以前我们实现一个顺序表是这样的。

typedef int VDateType;
class vector
{
public:
	//……
private:
	VDateType* _a;
	size_t _size;
	size_t _capacity;
};
int main()
{
	vector v1;
	vector v2;
	return 0;
}

但是我们无法让v1是int类型的顺序表,v2是double类型的顺序表。

用模板类来实现

#include<iostream>
#include<assert.h>
using namespace std;
namespace kcc
{
	template<class T>
	class vector
	{
	public:
		vector()
			:_a(nullptr)
			, _size(0)
			, _capacity(0)
		{}
		// 拷贝构造和operator= 这里涉及深浅拷贝问题,还挺复杂,后面具体再讲
		~vector()
		{
			delete[] _a;
			_a = nullptr;
			_size = _capacity = 0;
		}
		void push_back(const T& x)
		{
			if (_size == _capacity)
			{
				int newcapacity = _capacity == 0 ? 4 : _capacity * 2;
				T* tmp = new T[newcapacity];
				if (_a)
				{
					memcpy(tmp, _a, sizeof(T) * _size);
					delete[] _a;
				}
				_a = tmp;
				_capacity = newcapacity;
			}
			_a[_size] = x;
			++_size;
		}
		// 读+写
		T& operator[](size_t pos);
		size_t size();
	private:
		T* _a;
		size_t _size;
		size_t _capacity;
	};
	// 模板不支持分离编译,也就是声明在.h ,定义在.cpp,原因后面再讲
	// 建议就是定义在一个文件 xxx.h  xxx.hpp
	// 在类外面定义
	template<class T>
	T& vector<T>::operator[](size_t pos)
	{
		assert(pos < _size);
		return _a[pos];
	}
	template<class T>
	size_t vector<T>::size()
	{
		return _size;
	}
}
int main()
{
	kcc::vector<int> v1;		// int
	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);
	// v1.operator[](3);
	//cout << v1[3] << endl;
	//cout << v1[5] << endl;
	for (size_t i = 0; i < v1.size(); ++i)
	{
		v1[i] *= 2;
	}
	cout << endl;
	for (size_t i = 0; i < v1.size(); ++i)
	{
		cout << v1[i] << " ";
	}
	cout << endl;
	kcc::vector<double> v2;   // double
	v2.push_back(1.1);
	v2.push_back(2.2);
	v2.push_back(3.3);
	v2.push_back(4.4);
	for (size_t i = 0; i < v2.size(); ++i)
	{
		cout << v2[i] << " ";
	}
	cout << endl;
	return 0;
}

如果内部成员函数在类的外面定义的话,要加上类名::

当然了,本文章并不是重点介绍顺序表vector的实现,而是让大家看看类模板的效果

vector会在后续的文章中更新,敬请期待!

加载全部内容

相关教程
猜你喜欢
用户评论