yolov5模型配置yaml文件
LaLaLaLaXFF 人气:0yolov5的代码模型构建是通过.yaml文件实现的,初次看上去会一头雾水,这里记录一下,也方便自己后面用到的时候查看。
以models/yolov5s.yaml为例
文件内容如下:
# Parameters nc: 5 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [24,24,29,84,59,42] # P3/8 - [45,146,75,87,157,49] # P4/16 - [310,167,139,341,127,151] # P5/32 # YOLOv5 backbone backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, C3, [1024, False]], # 9 ] # YOLOv5 head head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]
我们一个一个来解释:
- 一些基本参数:
- nc 数据集中物体的类别数
- depth_multiple 控制网络深度的系数
- width_multiple 控制网络宽度的系数
- anchors 给不同尺度特征图分配的anchors,可以看到包含三个列表,表示给三个尺度分配,这三个尺度在[[17, 20, 23], 1, Detect, [nc, anchors]] 指明,分别是网络的第17、20和23层。注释P3/8是指输入下采样了23 = 8倍,我们也可以发现网络的第17层特征图为输入的1/8。
- BackBone:
骨干网络的定义,是一个列表,每一行表示一层。可以看到每一行是有4个元素的列表,[from, number, module, args]说明了这个4个元素的意思。- from 表示该层的输入从哪来。-1表示输入取自上一层,-2表示上两层,3表示第3层(从0开始数),[-1, 4]表示取自上一层和第4层,依次类推。。。网络层数的数法在注释里已经标出来了,从0开始,每一行表示一层,例如0-P1/2表示第0层,特征图尺寸为输入的1/21。
- number 表示该层模块堆叠的次数,对于C3、BottleneckCSP等模块,表示其子模块的堆叠,具体细节可以查看源代码。当然最终的次数还要乘上depth_multiple系数。
- module 表示该层的模块是啥。Conv就是卷积+BN+激活模块。所有的模块在 model/common.py 中都有定义。
- args 表示输入到模块的参数。例如Conv:[128, 3, 2] 表示输出通道128,卷积核尺寸3,strid=2,当然最终的输出通道数还要乘上 width_multiple,对于其他模块,第一个参数值一般都是指输出通道数,具体细节可以看 model/common.py 中的定义。
- Head
规则和BackBone一毛一样,这里再解释一些最后一层:
[[17, 20, 23], 1, Detect, [nc, anchors]] 表示把第17、20和23三层作为Detect模块的输入, [nc, anchors]是初始化Detect模块的参数。Detect模块在model/yolo.py中声明,相当于从模型中提出想要的层作为输入,转换为相应的检测头,其输出用来计算loss。
补充:模型 yaml 文件中第四参数解释
这里是对 backbone 和 head 超参数中第四个参数的理解
当第三个参数为 Focus 时,第四个参数中,第一个值为该模块中需要用到的通道数,第二个值为卷积核大小;
当第三个参数为 Conv 时,第四个参数中,第一个值为该模块中需要用到的通道数,第二个值为卷积核大小,第三个参数为步距大小;
当第三个参数为 BottleneckCSP 时,第四个参数中,第一个值是该模块用到的通道数;如果存在第二个参数,第二个参数:是否启用 shortcut 连接
当第三个参数为 SPP时,第四个参数就是 SPP 中需要用到的卷积核大小。
当第三个参数为 nn.Upsample时,就是 torch 中实现的上采样函数。
当第三个参数为 Concat时,第四个参数就是 concat 中拼接的维度。
当第三个参数为 Detect时,第四个参数中,第一个值为类别个数,第二个值为超参数 anchors 的值。
总结
加载全部内容