JS二叉搜索树
一碗周 人气:0前言
前面我们介绍了二叉树这个数据结构以及二叉树的遍历算法,这篇文章我们来学习一下一个特殊的二叉树——二叉搜索树(BST Binary Search Tree),也叫二叉排序树、二叉查找树。
什么是二叉搜索树
二叉搜索树首先它是一棵二叉树,而且还满足下面这些特质:
- 对于任何一个非空节点来说,它左子树上的值必须小于当前值;
- 对于任何一个非空节点来说,它右子树上的值必须大于当前值;
- 任何一颗子树满足上面的条件;
如下图所示:
上图就是一颗二叉搜索树,我们就拿根节点来说,根节点的值71,它的左子树的值分别是22、35、46、53和66,这几个都是满足左子树小于当前值;它的右子树的值分别是78、87和98,这几个值是满足右子树大于当前值的;以此类推,所以上图就是一棵二叉搜索树。
根据二叉搜索树的特质,我们还能得到以下结论:
- 二叉搜索树的任何一个节点的左子树、右子树都是一颗二叉搜索树;
- 二叉搜索树的最小的节点是整颗树的最左下角的叶子节点;
- 二叉搜索树的最大的节点是整棵树的最右下角的叶子节点;
构建一颗二叉搜索树
我们现在使用JavaScript来构建一颗二叉搜索树,要知道一颗二叉搜索树也是由一个一个节点组成,这里我们通过class
创建一个节点类,
示例代码如下:
class BinarySearchTree { constructor() { // 初始化根节点 this.root = null } // 创建一个节点 Node(val) { return { left: null, // 左子树 right: null, // 右子树 parent: null, // 父节点 val, } } }
这里一个节点由四部分组成,分别是指向左子树的指针、指向右子树的指针、指向父节点的指针以及当前值。
二叉搜索树的操作
关于二叉树的遍历操作我们在上一篇文章中已经介绍了,这里不在重复,这里主要介绍如下操作:
- 插入操作
- 查找操作
- 删除操作
向二叉搜索树中插入数据
向一个二叉搜索树插入数据实现思路如下:
- 判断
root
是否为空,如果为空则创建root; - 如果
root
非空,则需要判断插入节点的val
比根节点的val
是大还是小; - 如果比根节点小,说明是左子树的节点;
- 如果比根节点大,说明是右子树的节点;
- 上面两步重复执行,直到找到一个点,如果这个点小于我们要插入的值,且不存在右子树,将这个点作为其右叶子节点;如果这个点大于我们要插入的值,且不存在右子树,将这个点作为其左叶子节点。
示例代码如下:
// 创建要给插入节点的方法 insertNode(val) { const that = this // 允许接受一个数组,批量插入 if (Object.prototype.toString.call(val) === '[object Array]') { val.forEach(function (v) { that.insertNode(v) }) return } if (typeof val !== 'number') throw Error('插入的值不是一个数字') const newNode = this.Node(val) if (this.root) { // 根节点非空 this.#insertNode(this.root, newNode) } else { // 根节点是空的,直接创建 this.root = newNode } } // 私有方法,插入节点 #insertNode(root, newNode) { if (newNode.val < root.val) { // 新节点比根节点小,左子树 if (root.left === null) { // 如果左子树上没有内容,则直接插入,如果有,寻找下一个插入位置 root.left = newNode root.left.parent = root } else { this.#insertNode(root.left, newNode) } } else { // 新节点比根节点大,右子树 if (root.right === null) { // 如果右子树上没有内容,则直接插入,如果有,寻找下一个插入位置 root.right = newNode root.right.parent = root } else { this.#insertNode(root.right, newNode) } } }
在类中定义了insertNode
方法,这个方法接受数值或者数值类型的数组,将其插入这个二叉搜索树中;插入方法我们定义了一个私有的#insertNode
方法,用于节点的插入。
为了看到效果,我们这里定义了一个静态方法,用于中序遍历(因为中序遍历的顺序是左根右,在二叉搜索树中使用中序排序,最终结果是从小到大依次排序的)这个树,并返回一个数组,
示例代码如下:
// 中序遍历这个树 static inorder(root) { if (!root) return const result = [] const stack = [] // 定义一个指针 let p = root // 如果栈中有数据或者p不是null,则继续遍历 while (stack.length || p) { // 如果p存在则一致将p入栈并移动指针 while (p) { // 将 p 入栈,并以移动指针 stack.push(p) p = p.left } const node = stack.pop() result.push(node.val) p = node.right } return result }
测试代码如下:
const tree = new BinarySearchTree()
tree.insertNode([71, 35, 87, 22, 53, 46, 66, 78, 98])
const arr = BinarySearchTree.inorder(tree.root)
console.log(arr) // [ 22, 35, 46, 53, 66,71, 78, 87, 98 ]
最终的树结构如下:
查找二叉搜索树中的数据
现在我们封装一个find
方法,用于查找二叉搜索树中的某个数据,假如我们查找66这个数据,利用上面那个树,
其查找思路如下图所示:
递归方式实现如下:
/** * 根据 val 查找节点 * @param {number} val 需要查找的数值 * @returns 如果找到返回当前节点的引用,如果未找到返回 undefined */ find(val) { if (typeof val !== 'number') throw Error('插入的值不是一个数字') function r(node, val) { // console.log(node) if (!node) return if (node.val < val) { return r(node.right, val) } else if (node.val > val) { return r(node.left, val) } else { return node } } return r(this.root, val) }
迭代方式实现如下:
/** * 根据 val 查找节点 * @param {number} val 需要查找的数值 * @returns 如果找到返回当前节点的引用,如果未找到返回 undefined */ find(val) { if (typeof val !== 'number') throw Error('插入的值不是一个数字') let node = this.root while (node) { if (node.val < val) { // 进入右子树 node = node.right } else if (node.val > val) { // 进入左子树 node = node.left } else { return node } } return }
两者相对来说,使用迭代的方式更优一些。
删除二叉搜索树的某个节点
前驱后继节点
在开始删除二叉搜索树中的某个节点之前,我们先来了解一下什么是前驱和后继节点;
- 前驱节点指的是使用中序遍历当前二叉搜索树时,当前节点的上一个节点就是前驱节点,换一种说法就是在二叉搜索树中,当前节点的左子树的最大值,就是该节点的前驱节点;
- 后继节点指的是使用中序遍历当前二叉搜索树时,当前节点的下一个节点就是后继节点,换一种说法就是在二叉搜索树中,当前节点的右子树的最小值,就是该节点的后继节点;
如下图所示:
了解了什么是前驱和后继节点之后,现在我们来开始删除某个节点。
删除一个节点的三种情况
当删除的节点是叶子节点时,只需要将指向它的指针修改为null
,即可,如下图所示:
当需要删除的节点存在一个子节点时, 需要将要删除节点的子节点的parent
指针指向要删除节点的父节点,然后将当前要删除节点的父节点指向子节点即可,
如下图所示:
当需要删除的节点存在一个子节点时, 删除步骤如下:
- 找到当前节点的前驱或者后继节点,这里选择后继;
- 然后将后继节点的值赋值给当前节点;
- 删除后继节点。
如下图所示:
现在我们将这些情况已经分析完成了,现在通过代码实现一下。
实现代码
实现代码如下:
remove(val) { // 1. 删除节点 const cur = this.find(val) if (!val) return false // 未找到需要删除的节点 if (!cur.left && !cur.right) { // 1. 当前节点是叶子节点的情况 this.#removeLeaf(cur) } else if (cur.left && cur.right) { // 2. 当前节点存在两个子节点 // 2.1 找到当前节点的后继节点 const successorNode = this.#minNode(cur.right) // 2.2 将后继节点的值赋值给当前值 cur.val = successorNode.val if (!successorNode.left && !successorNode.right) { // 2.3 后继节点是叶子节点,直接删除 this.#removeLeaf(successorNode) } else { // 2.4 后继节点不是叶子节点 // 2.4.1记录该节点的子节点, let child = successorNode.left !== null ? successorNode.left : successorNode.right // 2.4.2 记录该节点的父节点 let parent = successorNode.parent // 2.4.3 如果当前父节点的left是后继结点,则把后继结点的父节点的left指向后继结点的子节点 if (parent.left === successorNode) { parent.left = child } else { // 2.4.4 如果不是,则让父节点的right指向后继结点的子节点 parent.right = child } // 2.4.5 修改子节点的parent指针 child.parent = parent } // 2.3 删除后继节点 } else { // 记录当前节点的是否是父节点的左子树 const isLeft = cur.val < cur.parent.val // 3. 仅存在一个子节点 if (cur.left) { // 3.1 当前节点存在左子树 cur.parent[isLeft ? 'left' : 'right'] = cur.left cur.left.parent = cur.parent } else if (cur.right) { // 3.2 当前节点存在右子树 cur.parent[isLeft ? 'left' : 'right'] = cur.right cur.right.parent = cur.parent } } } // 删除叶子节点 #removeLeaf(node) { if (!node) return const parent = node.parent if (node.val < parent.val) { // 当前要删除的叶子节点是左节点 parent.left = null } else { // 当前要删除的叶子节点是右节点 parent.right = null } } // 查找最小值 #minNode(node) { if (!node) return if (!node.left) return node let p = node.left while (p.left) { p = p.left } return p }
完整代码
本篇文章中的完整代码如下:
class BinarySearchTree { constructor() { // 初始化根节点 this.root = null } // 创建一个节点 Node(val) { return { left: null, // 左子树 right: null, // 右子树 parent: null, // 父节点 val, } } /** * 创建要给插入节点的方法 * @param {number | array[number]} val * @returns */ insertNode(val) { const that = this // 允许接受一个数组,批量插入 if (Object.prototype.toString.call(val) === '[object Array]') { val.forEach(function (v) { that.insertNode(v) }) return } if (typeof val !== 'number') throw Error('插入的值不是一个数字') const newNode = this.Node(val) if (this.root) { // 根节点非空 this.#insertNode(this.root, newNode) } else { // 根节点是空的,直接创建 this.root = newNode } } /** * 私有方法,插入节点 * @param {Object{Node}} root * @param {Object{Node}} newNode */ #insertNode(root, newNode) { if (newNode.val < root.val) { // 新节点比根节点小,左子树 if (root.left === null) { // 如果左子树上没有内容,则直接插入,如果有,寻找下一个插入位置 root.left = newNode root.left.parent = root } else { this.#insertNode(root.left, newNode) } } else { // 新节点比根节点大,右子树 if (root.right === null) { root.right = newNode root.right.parent = root } else { this.#insertNode(root.right, newNode) } } } /** * 根据 val 查找节点 * @param {number} val 需要查找的数值 * @returns 如果找到返回当前节点的引用,如果未找到返回 undefined */ find(val) { if (typeof val !== 'number') throw Error('插入的值不是一个数字') let node = this.root while (node) { if (node.val < val) { // 进入右子树 node = node.right } else if (node.val > val) { // 进入左子树 node = node.left } else { return node } } return } // /** // * 根据 val 查找节点 递归版 // * @param {number} val 需要查找的数值 // * @returns 如果找到返回当前节点的引用,如果未找到返回 undefined // */ // find(val) { // if (typeof val !== 'number') throw Error('插入的值不是一个数字') // function r(node, val) { // // console.log(node) // if (!node) return // if (node.val < val) { // return r(node.right, val) // } else if (node.val > val) { // return r(node.left, val) // } else { // return node // } // } // return r(this.root, val) // } remove(val) { // 1. 删除节点 const cur = this.find(val) if (!val) return false // 未找到需要删除的节点 if (!cur.left && !cur.right) { // 1. 当前节点是叶子节点的情况 this.#removeLeaf(cur) } else if (cur.left && cur.right) { // 2. 当前节点存在两个子节点 // 2.1 找到当前节点的后继节点 const successorNode = this.#minNode(cur.right) // 2.2 将后继节点的值赋值给当前值 cur.val = successorNode.val if (!successorNode.left && !successorNode.right) { // 2.3 后继节点是叶子节点,直接删除 this.#removeLeaf(successorNode) } else { // 2.4 后继节点不是叶子节点 // 2.4.1记录该节点的子节点, let child = successorNode.left !== null ? successorNode.left : successorNode.right // 2.4.2 记录该节点的父节点 let parent = successorNode.parent // 2.4.3 如果当前父节点的left是后继结点,则把后继结点的父节点的left指向后继结点的子节点 if (parent.left === successorNode) { parent.left = child } else { // 2.4.4 如果不是,则让父节点的right指向后继结点的子节点 parent.right = child } // 2.4.5 修改子节点的parent指针 child.parent = parent } // 2.3 删除后继节点 } else { // 记录当前节点的是否是父节点的左子树 const isLeft = cur.val < cur.parent.val // 3. 仅存在一个子节点 if (cur.left) { // 3.1 当前节点存在左子树 cur.parent[isLeft ? 'left' : 'right'] = cur.left cur.left.parent = cur.parent } else if (cur.right) { // 3.2 当前节点存在右子树 cur.parent[isLeft ? 'left' : 'right'] = cur.right cur.right.parent = cur.parent } } } // 删除叶子节点 #removeLeaf(node) { if (!node) return const parent = node.parent if (node.val < parent.val) { // 当前要删除的叶子节点是左节点 parent.left = null } else { // 当前要删除的叶子节点是右节点 parent.right = null } } // 查找最小值 #minNode(node) { if (!node) return if (!node.left) return node let p = node.left while (p.left) { p = p.left } return p } // 中序遍历这个树 static inorder(root) { if (!root) return const result = [] const stack = [] // 定义一个指针 let p = root // 如果栈中有数据或者p不是null,则继续遍历 while (stack.length || p) { // 如果p存在则一致将p入栈并移动指针 while (p) { // 将 p 入栈,并以移动指针 stack.push(p) p = p.left } const node = stack.pop() result.push(node.val) p = node.right } return result } } const tree = new BinarySearchTree() tree.insertNode([71, 35, 84, 22, 53, 46, 66, 81, 83, 82, 88, 98]) console.log(BinarySearchTree.inorder(tree.root)) // [ 22, 35, 46, 53, 66, 71, 81, 82, 83, 84, 88, 98 ] tree.remove(71 console.log(BinarySearchTree.inorder(tree.root)) // [ 22, 35, 46, 53, 66, 81, 82, 83, 84, 88, 98 ]
总结
文章介绍了二叉搜索树的性质以及二叉搜索树的构建、查找和删除
加载全部内容