Python Numpy模块
mb62d3c286f15ed 人气:0NumPy
NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Nupmy可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。
NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:
- 一个强大的 N 维数组对象 ndarray
- 广播功能函数
- 整合 C/C++/Fortran 代码的工具
- 线性代数、傅里叶变换、随机数生成等功能
ndarray对象
NumPy 最重要的一个对象是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,可以使用基于 0 的索引访问集合中的项目。
ndarray 对象是用于存放同类型元素的多维数组。ndarray中的每个元素在内存中使用相同大小的块。 ndarray中的每个元素是数据类型对象的对象(称为 dtype)
numpy.array( object , dtype = None , ndmin = 0 ,copy = True , order = None , subok = False )
一般只有 object 、dtype和 ndmin 参数常用,其他参数不常用
import numpy a=numpy.array([1,2,3]) #一维 b=numpy.array([[1,2,3],[4,5,6]]) #二维 c=numpy.array([1,2,3],dtype=complex) #元素类型为复数 d=numpy.array([1,2,3],ndmin=2) #二维 print(a,type(a)) print(b,type(b)) print(c,type(c)) print(d,type(d)) #################################### [1 2 3] <class 'numpy.ndarray'> [[1 2 3] [4 5 6]] <class 'numpy.ndarray'> [1.+0.j 2.+0.j 3.+0.j] <class 'numpy.ndarray' [[1 2 3]] <class 'numpy.ndarray'>
Numpy数据类型
Numpy数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
ndarray 对象属性有:
常见的属性有下面几种 :
ndarray.shape : 这一数组属性返回一个包含数组纬度的元组,它也可以用于调整数组大小
import numpy as np a=np.array([[1,2,3],[4,5,6]]) print(a.shape) #打印shape属性 a.shape=(3,2) #修改shape属性 print(a) ####################################### (2, 3) [[1 2] [3 4] [5 6]]
ndarray.ndim: 这一数组属性返回数组的维数
import numpy as np a=np.arange(24) #np.arange返回0-23的列表类型的数据 print(a.ndim) b=a.reshape(2,3,4) print(b) print(b.ndim) ############################ 1 [[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] 3
ndarray.itemsize
import numpy as np a=np.array([1,2,3]) #默认是四个字节 print(a.itemsize) ######################################### 4
加载全部内容