亲宝软件园·资讯

展开

Python np.linalg.norm()用法

小k同学! 人气:0

前言

np.linalg.norm()用于求范数,linalg本意为linear(线性) + algebra(代数),norm则表示范数。

用法

np.linalg.norm(x, ord=None, axis=None, keepdims=False)

1.x: 表示矩阵(一维数据也是可以的~)

2.ord: 表示范数类型

向量的范数

矩阵的向量

3.axis:

参数含义
0表示按列向量来进行处理,求多个列向量的范数
1表示按行向量来进行处理,求多个行向量的范数
None表示整个矩阵的范数

4.keepdims:表示是否保持矩阵的二位特性,True表示保持,False表示不保持,默认为False

例子

1.默认状态下

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X))

Result:

2.改变axis

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=1))
import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=0))

3.改变ord

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, ord=1))
import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, ord=2))

4.改变keepdims

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=0, keepdims=True))
import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=0))

注意:严格来说,当 ord <= 0 时,不符合数学上的范数公式,但它仍然适用于各种数值目的。

import numpy as np
a = np.arange(12)
print(a)
b = a.reshape((3, 4))
print(b)
print(np.linalg.norm(a))
print(np.linalg.norm(b))
print(np.linalg.norm(b, 'fro'))
print(np.linalg.norm(b, 'nuc'))

print(np.linalg.norm(a, np.inf))
print(np.linalg.norm(a, -np.inf))
print(np.linalg.norm(a, 1))

print(np.linalg.norm(b, np.inf, axis=1))
print(np.linalg.norm(b, -np.inf, axis=0))
print(np.linalg.norm(b, 1))

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
22.4944437584
22.4944437584
22.4944437584
24.3646384993
11.0
0.0
66.0
[  3.   7.  11.]
[ 0.  1.  2.  3.]
21.0

总结

加载全部内容

相关教程
猜你喜欢
用户评论