Pandas时间类型转换
山茶花开时。 人气:2在平时的需求开发中,经常涉及到利用Pandas处理日期相关类型字段的转换和操作,为此特地记录以下练习案例,帮助大家的同时,也便于日后的学习和复盘
案例1
问题: 提取'W1|2022/7/28'字段中的年月日信息,取名为week_start,即一周开始的日期,并根据week_start计算出该周结束的具体日期week_end
import pandas as pd import datetime df1 = pd.DataFrame([[6,3],[6,3]], columns = ['Working day','W1|2022/7/28']) # 一周开始的日期 # '2022/7/28'——>str类型 week_start = df1.columns[1].split('|')[1] # 将start_day类型转换成date类型(2022-07-28) week_start = datetime.datetime.strptime(week_start, '%Y/%m/%d').date() # 一周结束的日期(2022-08-03) week_end = week_start + datetime.timedelta(days=6)
df1
案例2
问题: 根据'Date'字段生成'Date - 2'字段
import pandas as pd from datetime import timedelta from datetime import datetime df2 = pd.DataFrame([[1,'20191031'], [2,'20191106'], [3,'20191106']],columns=['Id','Date']) # 'Date'字段中的值减去2天,生成'Date - 2'字段 df2['Date - 2'] = df2['Date'].apply(lambda x:(datetime.strptime(x,'%Y%m%d') - timedelta(days=datetime.strptime(x,'%Y%m%d').weekday())).strftime("%Y%m%d"))
df2
案例3
问题:从字符串表示的日期时间中仅获取“年/月/日”
import pandas as pd from datetime import datetime df3 = pd.DataFrame([[1,'2017-01-02 00:00:00'], [2,'2017-01-09 00:00:00'] ],columns = ['Id','Wk'])
df3
错误写法
# 运行以下代码会报错'str' object has no attribute 'strftime' df3['new_wk'] = df3['Wk'].apply(lambda x:x.strftime("%Y%m%d"))
正确写法
# 先利用.strptime()将str格式的变量转化成datetime下的时间格式 # 然后再利用.strftime()获取“年/月/日” df3['Wk'] = df3['Wk'].apply(lambda x:datetime.strptime(x,"%Y-%m-%d %H:%M:%S")) df3['new_Wk'] = df3['Wk'].apply(lambda x:x.strftime("%Y/%m/%d"))
处理过后的df3
案例4
问题:将'月/日/年 时间'格式的值转换为'年月日'(10/11/19 05:28:27 => 20191011)
import pandas as pd df4 = pd.DataFrame([['A','10/11/19 05:28:27','08/04/20 08:38:59'], ['B','10/11/19 05:28:27',None], ['C','10/11/19 05:28:27',None] ],columns = ['site','creation_date','closure_date'])
df4
# 将'creation_date'栏位的值变形 # 10/11/19 05:28:27 => 20191011 df4['creation_date'] = df4['creation_date'].apply(lambda x:pd.to_datetime(x).strftime("%Y%m%d")) # 将'closure_date'字段中nan值填充为0 df4['closure_date'] = df4['closure_date'].fillna(0) # 筛选closure_date'字段中值为0的数据记录,取名为df4_na df4_na = df4[df4['closure_date'].isin([0])] # 筛选closure_date'字段中值不为0的数据记录,取名为df4 df4 = df4[~df4['closure_date'].isin([0])] # 将'closure_date'栏位的值变形 # 08/04/20 08:38:59 => 20200804 df4['closure_date'] = df4['closure_date'].apply(lambda x:pd.to_datetime(x).strftime("%Y%m%d")) df4 = pd.concat([df4, df4_na], ignore_index = True)
处理过后的df4
补充知识
我们通常使用pd.to_datetime()和s.astype('datetime64[ns]')来做时间类型转换
import pandas as pd t = pd.Series(['20220720','20220724']) # dtype: datetime64[ns] new_t1 = pd.to_datetime(t) new_t2 = t.astype('datetime64[ns]')
t
new_t1
new_t2
案例5
问题: 添加字段'Week',逐行递增
import pandas as pd df5 = pd.DataFrame(columns=['Week','Materials']) all_material = ['A32456','B78495'] for row in range(0,3): week = row + 1 datas = [week, all_material] df5.loc[row] = datas ''' df5: Week Materials 0 1 [A32456, B78495] 1 2 [A32456, B78495] 2 3 [A32456, B78495] ''' print(df5)
案例6
问题:日期型转换为字符型
import datetime today = datetime.date.today() # date类型 2022-07-28 today.strftime('%Y-%m-%d') # '2022-07-28'
import datetime dt = datetime.datetime.now() # datetime类型 2022-07-28 22:46:20.528813 dt.strftime('%Y-%m-%d') # '2022-07-28'
import datetime today = str(datetime.date.today()) # str类型 2022-07-28 today.replace("-","") # '20220728'
案例7
问题:文本型转日期型
#文本型日期转为日期型日期 import pandas as pd from datetime import datetime df7=pd.DataFrame({'销售日期':['2022-05-01','2022-05-02','2022-05-03','2022-05-04','2022-05-05','2022-05-06','2022-05-07','2022-05-08','2022-05-09','2022-05-10'], '城市':['兰州','白银','天水','武威','金昌','陇南','嘉峪关','酒泉','敦煌','甘南']})
df7
文本型转为日期型可用datetime.strptime函数
# "%Y-%m-%d"表示将文本日期解析为年月日的日期格式 df7['日期'] = df7['销售日期'].map(lambda x:datetime.strptime(x,"%Y-%m-%d"))
文本型转为日期型也可用pd.to_datetime函数
# "%Y-%m-%d"表示将文本日期解析为年月日的日期格式 df7['日期'] = pd.to_datetime(df7['销售日期'],format='%Y-%m-%d')
处理过后的df7
案例8
问题:提取日期字段的年份、月份、日份和周数
import pandas as pd from datetime import datetime df8=pd.DataFrame({'销售日期':['2022-05-01','2022-05-02','2022-05-03','2022-05-04','2022-05-05','2022-05-06','2022-05-07','2022-05-08','2022-05-09','2022-05-10'], '城市':['兰州','白银','天水','武威','金昌','陇南','嘉峪关','酒泉','敦煌','甘南']}) df8['日期'] = df8['销售日期'].map(lambda x:datetime.strptime(x,"%Y-%m-%d"))
df8
#由日期数据提取年 df8['年份'] = df8['日期'].apply(lambda x: x.year) df8['年份'] =df8['年份'].astype(str)+'年' #由日期数据提取月 df8['月份'] = df8['日期'].apply(lambda x: x.month) df8['月份'] =df8['月份'].astype(str)+'月' #由日期数据提取日 df8['日份'] = df8['日期'].apply(lambda x: x.day) df8['日份'] =df8['日份'].astype(str)+'日' # 日期中的周使用date.isocalendar()[1]提取 #根据日期返回周数,以周一为第一天开始 df8['周数'] = [date.isocalendar()[1] for date in df8['日期'].tolist()] df8['周数'] = df8['周数'].astype(str)+'周'
处理后的df8
案例9
问题:借助offset时间偏移函数将日期加3天
import pandas as pd from datetime import datetime df9=pd.DataFrame({'销售日期':['2022-05-01','2022-05-02','2022-05-03','2022-05-04','2022-05-05','2022-05-06','2022-05-07','2022-05-08','2022-05-09','2022-05-10'], '城市':['兰州','白银','天水','武威','金昌','陇南','嘉峪关','酒泉','敦煌','甘南']}) df9['日期'] = df9['销售日期'].map(lambda x:datetime.strptime(x,"%Y-%m-%d"))
df9
#借助offset时间偏移函数将日期加3天 from pandas.tseries.offsets import Day df9['日期_3']=df9['日期']+Day(3)
处理后的df9
案例10
问题:将文本型日期转换为日期型日期
#文本型日期转为日期型日期 import pandas as pd import datetime as dt from datetime import datetime df1=pd.DataFrame({'销售时间':['2022-05-01 00:00:00','2022-05-02 00:00:00','2022-05-03 00:00:00','2022-05-04 00:00:00','2022-05-05 00:00:00', '2022-05-06 00:00:00','2022-05-07 00:00:00','2022-05-08 00:00:00','2022-05-09 00:00:00','2022-05-10 00:00:00',]}) #df['日期']=df['销售日期'].map(lambda x:datetime.strptime(x,"%Y-%m-%d")) df1['日期_x']=df1['销售时间'].str.split(' ',expand=True)[0] df1['日期_y']=pd.to_datetime(df1['销售时间'],format='%Y-%m-%d') df1
df10
日期中带有时分秒'00:00:00',有如下方法将其处理为'%Y-%m-%d'形式
df10['日期']=df10['销售时间'].str.split(' ',expand=True)[0]
处理后的df10
加载全部内容