pandas数据清洗
阡之尘埃 人气:0前言
pandas对大数据有很多便捷的清洗用法,尤其针对缺失值和重复值。缺失值就不用说了,会影响计算,重复值有时候可能并未带来新的信息反而增加了计算量,所以有时候要进行处理。针对一些文本数据可能不合要求的还要进行替换什么的。
首先导入包:
import numpy as np import pandas as pd
缺失值处理
'''一般使用特殊类型 NaN 代表缺失值,可以用 Numpy 可定义它np.NaN/np.nan。在 Pandas 1.0 以后实验性地使用一个标量 pd.NA 来代表。
如果想把正负无穷也为认是缺失值,可以通过以下全局配置来设定:'''
pandas.options.mode.use_inf_as_na = True #以下数据 NaN 为缺失值: df=(pd.DataFrame(np.random.randn(5, 3),index=['a', 'c', 'e', 'f', 'h'], columns=['one', 'two', 'three']) .reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])) df
缺失值的判断
#可以判断是否缺失值,DataFrame 和 Series 一般都支持。:
# 不是缺失值 df.one.notna()
df.isna() # 是缺失值
df[df.one.notna()]# 进行筛选
#需要注意的是,Numpy 中 np.nan 和 np.nan 不相等,因此不能用 ==/!= 进行对比: None == None # noqa: E711 # True np.nan == np.nan # False None == np.nan # False
其他方法:
df.notna() df['team'].isna() df['team'].isnull()
缺失值统计
df.isnull().sum()#计算每列缺失值个数 df.isnull().sum(1)#计算每行缺失值个数 df.isnull().sum().sum()#总共缺失值个数
缺失值筛选
df.loc[df.isna().any(1)]# 有缺失值的行 df.loc[:,df.isna().any()] # 有缺失值的列 df.loc[~(df.isna().any(1))] # 没有缺失值的行 df.loc[:,~(df.isna().any())] # 没有缺失值的列
缺失值类型
#时间中的缺失值 #对于时间中的缺失值,Pandas 提供了一个 NaT 来表示,并且 NaT 和 NaN 之间是兼容的: df['timestamp'] = pd.Timestamp('20120101') df.loc[['a', 'c', 'h'], ['one', 'timestamp']] = np.nan df.timestamp
#整型中的缺失值,由于 NaN 是浮点型,因此一列甚至缺少一个整数的整数列都将转换为浮点。
pd.Series([1, 2, np.nan, 4], dtype=pd.Int64Dtype())
插入缺失值
#可以使用 None 等方法将内容修改为缺失值: s.loc[0] = None s.loc[1] = np.nan df.two = pd.NA
缺失值填充
首先生成案例数据:
df = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1], [np.nan, np.nan, np.nan, 5], [np.nan, 3, np.nan, 4]], columns=list('ABCD')) df
fillna(x) 可以将缺失值填充指定的值。以下为几种常见的填充方法:
df.fillna(0)# 填充为 0 # 填充为指定字符 df.fillna('missing') df.fillna('暂无') df.fillna('待补充') df.one.fillna('暂无') # 指定字段填充 df.one.fillna(0, inplace=Ture) # 使填充内容生效 df.fillna(0, limit=1) # 只替换第一个 values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} # 不同列替换不同的值 df.fillna(value=values)
不指定值,使用一定的方法。
#使用 method{‘backfill', ‘bfill', ‘pad', ‘ffill', None}, default None df.fillna(method='backfill')# 使用上一个有效值填充 df.fillna(method='bfill')# 同 backfill df.fillna(method='pad')# 把当前值广播到后边的缺失值 df.fillna(method='ffill')# 同 pad #fillna(method='ffill') 可以简写为 ffill() , fillna(method='bfill') 可以简写为 bfill()
使用计算值填充:
# 填充列的平均值 df.fillna(df.mean()) # 对指定列填充平均值 df.fillna(df.mean()['B':'C']) # 填充列的平均值,另外一个方法 df.where(pd.notna(df), df.mean(), axis='columns') #特别的计算: # 第一个非空值 df.fillna(method='bfill').head(1).iloc[0] # 第一个非空值索引 df.notna().idxmax() df.apply(pd.Series.first_valid_index)
插值填充
插值方式,以下是一个非常简单的示例,其中一个值是缺失的,我们对它进行差值:
s = pd.Series([0, 1,4,9, np.nan, 25]) s.interpolate()
9和25之间的中间点为17,就把缺失值补为了17,这是线性插值。
s.interpolate(method='spline',order=2)
这是二级多项式插值。用X^2这个函数去插值的,
interpolate() 的具体参数
'''默认linear 方法,会认为是一条直线。
计算方法:
默认 method=‘linear’ 如果你的数据增长速率越来越快,可以选择 method='quadratic' 二次插值。如果数据集呈现出累计分布的样子,
推荐选择 method='pchip'。如果需要填补缺省值,以平滑绘图为目标,推荐选择 method='akima'。method='akima' 和 method = ‘pchip’,
需要你的环境中安装了 Scipy 库。除此之外,method='barycentric' 和 method='pchip' 同样也需要 Scipy 才能使用。
使用插值方法,可为:
- linear:线性,忽略索引,并将值等距地对待,这是MultiIndexes支持的唯一方法
- time:时间,以插值给定的时间间隔长度处理每日或更高粒度的数据
- index, values:索引,值,使用索引的实际数值
- pad:使用现有值填写NaN。
- ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’:
- 传递给 scipy.interpolate.interp1d,这些方法使用索引的数值。 ‘polynomial’ 和 ‘spline’ 都要求您还指定一个顺序(int),
- 例如 df.interpolate(method='polynomial',order=5)
- nearest:最近
- zero:零
- slinear:线性
- quadratic:二次方
- cubic:立方
- spline:花键,样条插值
- barycentric:重心插值
- polynomial:多项式
- ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’: SciPy 类似名称的插值方法。
- krogh: 克罗格插值
- piecewise_polynomial: 分段多项式
- spline: 样条插值
- pchip: 立方插值 (累计分布)
- akima: 阿克玛插值 (平滑绘图)
- from_derivatives:指 scipy.interpolate.BPoly.from_derivatives,它替换了 scipy 0.18 中的 piecewise_polynomial 插值方法。
其他参数:
- axis: 插值应用的轴方向,可选择 {0 or ‘index’, 1 or ‘columns’, None}, 默认为 None
- limitint: 要填充的连续 NaN 的最大数量, 必须大于 0。
- inplace: 是否将最终结果替换原数据,默认为 False
- limit_direction: 限制方向,可传入 {‘forward’, ‘backward’, ‘both’}, 默认 ‘forward’,如果指定了限制,则将沿该方向填充连续的 NaN
- limit_area: 限制区域,可传入 {None, ‘inside’, ‘outside’}, 默认 None,如果指定了限制,则连续的NaN将被此限制填充
- None: 没有填充限制
- ‘inside’: 仅填充有效值包围的NaN(内插)
- ‘outside’: 仅将NaN填充到有效值之外(外推)
- downcast: 可传入‘infer’ 或者 None, 默认是 None,如果可以向下转换 dtypes
- **kwargs: 传递给插值函数的关键字参数 '''
缺失值删除
生成案例数据:
#一般删除会针对行进行,如一行中有缺失值就会删除,当然也会有针对列的。 df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], "toy": [np.nan, 'Batmobile', 'Bullwhip'], "born": [pd.NaT, pd.Timestamp("1940-04-25"), pd.NaT]}) df
缺失值删除 dropna
# 删除所有有缺失值的行(有一个缺失就删除) df.dropna() # 删除所有有缺失值的列 df.dropna(axis='columns') df.dropna(axis=1) # 删除所有值都缺失的行 df.dropna(how='all') # 不足2个非空值时删除 df.dropna(thresh=2) # 指定判断缺失值的列范围 df.dropna(subset=['name', 'born']) # 使删除和的结果生效 df.dropna(inplace=True) # 指定列的缺失值删除 df.toy.dropna()
重复值处理
重复值的寻找主要使用duplicated,语法为:
df.duplicated(subset=None, keep='first')
'''可以返回表示重复行的布尔系列,可以指定列。keep参数确定要标记的重复项(如果有),选项有:
- first:将除第一次出现的重复值标记为True,默认。
- last:将除最后一次出现的重复值标记为True。
- False:将所有重复值标记为True。'''
生成案例数据:
df = pd.DataFrame({'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], 'rating': [4, 4, 3.5, 15, 5] }) df
重复值查找
#默认情况下,对于每组重复的值,第一次出现都设置为False,所有其他值设置为True。
df.duplicated()
通过使用“ last”,将每组重复值的最后一次出现设置为False,将所有其他重复值设置为True。
df.duplicated(keep='last')
#通过将keep设置为False,所有重复项都为True。
df.duplicated(keep='last')
要在特定列上查找重复项,请使用子集。
df.duplicated(keep=False)
删除重复值
'''删除重复值的语法为:
df.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False)
subset指定的标签或标签序列可选,仅删除某些列重复项,默认情况为使用所有列,其他有:
- keep:确定要保留的重复项(如果有)
- first : 保留第一次出现的重复项,默认
- last : 保留最后一次出现的重复项。
- False : 删除所有重复项
- inplac:False,是将副本放置在适当位置还是返回副本
- ignore_inde:如果为True, 则重新分配自然索引(0, 1, …, n - 1)'''
df.drop_duplicates()
#默认情况下,它将基于所有列删除重复的行。
df.drop_duplicates(subset=['brand'])
#要删除特定列上的重复项,使用子集
df.drop_duplicates(subset=['brand', 'style'], keep='last')
#删除重复项并保留最后一次出现,请使用keep。
drop删除数据
语法
df.drop(labels=None,axis=0,index=None,columns=None,level=None,inplace=False,errors='raise')
labels表示要删除的行或者列,多个可以传入列表:
- axis:表示轴方向,默认0(行)
- index:指定一行或多行
- columns:指定列
- level:指定多层索引
- inplace:立即修改
df.drop([2,4])#删除指定行
df.drop(['brand','rating'],axis=1)#删除指定列 df.drop(columns=['brand','rating'])#同上
数据替换replace
有时候想把数据替换为指定的值,空值缺失值都可以替换
#指定值替换,以下是在 Series 中将 0 替换为 5: ser = pd.Series([0., 1., 2., 3., 4.]) ser.replace(0, 5) #也可以批量替换: # 一一对应进行替换 ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) # 用字典映射对应替换值 ser.replace({0: 10, 1: 100}) # 将 a 列的 0 b 列中的 5 替换为 100 df.replace({'a': 0, 'b': 5}, 100) # 指定列里的替换规划 df.replace({'a': {0: 100, 4: 400}})
除了给定指定值进行替换,我们还可以指定一些替换的方法:
# 将 1,2,3 替换为它们前一个值(0) ser.replace([1, 2, 3], method='pad') # ffill 是它同义词 # 将 1,2,3 替换为它们后一个值(4) ser.replace([1, 2, 3], method='bfill')
字符替换
#如果遇到字符比较复杂的内容,就是使用正则(默认没有开启)进行匹配: # 把 bat 替换为 new df.replace(to_replace='bat', value='new') # 利用正则将 ba 开头的替换为 new df.replace(to_replace=r'^ba.$', value='new', regex=True) # 如果多列规则不一的情况下可以按以下格式对应传入 df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) # 多个规则替换为同一个值 df.replace(regex=[r'^ba.$', 'foo'], value='new') # 直接多个正则及对应的替换内容 df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'})
缺失值替换
替换可以处理缺失值相关的问题,如我们可以将无效的值先替换为 nan,再做缺失值处理:
生成案例数据‘
d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', np.nan, 'd']} df = pd.DataFrame(d) df
一些用法:
# 将.替换为 nan,(也可以替换为 None) df.replace('.', np.nan) # 使用正则,将空格和点等替换为 nan df.replace(r'\s*\.\s*', np.nan, regex=True) # 对应替换,a 换 b, 点换 nan df.replace(['a', '.'], ['b', np.nan]) # 点换 dot, a 换 astuff (第一位+) df.replace([r'\.', r'(a)'], ['dot', r'\1stuff'], regex=True) # b 中的点要替换,替换为 b 替换规则为 nan,可以多列 df.replace({'b': '.'}, {'b': np.nan}) # 使用正则 df.replace({'b': r'\s*\.\s*'}, {'b': np.nan}, regex=True) # b列的 b 值换为空 df.replace({'b': {'b': r''}}, regex=True) # b 列的点空格等换 nan df.replace(regex={'b': {r'\s*\.\s*': np.nan}}) # b列点等+ty df.replace({'b': r'\s*(\.)\s*'}, {'b': r'\1ty'},regex=True) # 多个正则规则(a,b,. 都换为缺失) df.replace([r'\s*\.\s*', r'a|b'], np.nan, regex=True) # 用参数名传参 df.replace(regex=[r'\s*\.\s*', r'a|b'], value=np.nan)
数字替换
生成数据:
df = pd.DataFrame(np.random.randn(5, 2)) df[np.random.rand(df.shape[0]) > 0.5] = 1.5 df
# 将 1.5 替换为 nan df.replace(1.5, np.nan) # 将1.5换为 nan, 同时于左上角的值换为 a df.replace([1.5, df.iloc[0, 0]], [np.nan, 'a']) # 使替换生效 df.replace(1.5, np.nan, inplace=True)
数据裁剪df.clip()
#对一些极端值,如过大或者过小,可以使用 df.clip(lower, upper) 来修剪,当数据大于 upper 时,使用 upper 的值,
#小于 lower 时用 lower 的值,就像 numpy.clip 方法一样。
df = pd.DataFrame({'a': [-1, 2, 5], 'b': [6, 1, -3]}) df
修剪成最大为3最小为0
df.clip(0,3)
用来处理数据里面的异常值什么的还是很方便的。
加载全部内容