亲宝软件园·资讯

展开

pandas df.fillna

非昨 人气:0

df.fillna主要用来对缺失值进行填充,可以选择填充具体的数字,或者选择临近填充。

官方文档

DataFrame.fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)

解释

构建实例:

import numpy as np
import pandas as pd
df = pd.DataFrame([[np.nan,22,23,np.nan],[31,np.nan,12,34],[np.nan,np.nan,np.nan,23],
[15,17,66,np.nan]],columns=list('ABCD'))
df


    A        B        C        D
0    NaN        22.0    23.0    NaN
1    31.0    NaN        12.0    34.0
2    NaN        NaN        NaN        23.0
3    15.0    17.0    66.0    NaN

value:scalar,series,dict,dataframe

填充的值,可以是一个标量,或者字典等

df.fillna(value=1)#缺失值填充为1
    A        B        C        D
0    1.0        22.0    23.0    1.0
1    31.0    1.0        12.0    34.0
2    1.0        1.0        1.0        23.0
3    15.0    17.0    66.0    1.0
------------------------------------------
df.fillna(value={'A':2,'B':3})# 传入一个字典,指定某列填充的具体值
    A        B        C        D
0    2.0        22.0    23.0    NaN
1    31.0    3.0        12.0    34.0
2    2.0        3.0        NaN        23.0
3    15.0    17.0    66.0    NaN

method:{backfill,bfill,pad,ffill,none},default none

填充的方法,backfill和bfill代表填充后侧值,ffill和pad填充空值前侧值
 

df.fillna(method='ffill')#向前填充,注意此处默认参数axis=0,所以空值是填充上一行的数据,而不是前一列。

    A        B        C        D
0    NaN        22.0    23.0    NaN
1    31.0    22.0    12.0    34.0
2    31.0    22.0    12.0    23.0
3    15.0    17.0    66.0    23.0

axis:
控制行列的参数,用法和其他方法完全相同

inplace:
是否将结果赋值给原变量,和其他方法里的用法相同

limit:int 或None
向前或后填充的最大数量,必须是大于0的整数
如果指定了method参数,则连续空值值填充前int个
如果未指定method参数,则只填充所在轴上的前int空值
 

    A        B        C        D#原数据
0    NaN        22.0    23.0    NaN
1    31.0    NaN        12.0    34.0
2    NaN        NaN        NaN        23.0
3    15.0    17.0    66.0    NaN

df.fillna(value=0,axis=1,limit=1)#在ABCD列上,每列只填充第一个空值
    A        B        C        D
0    0.0        22.0    23.0    0.0
1    31.0    0.0        12.0    34.0
2    NaN        NaN        0.0        23.0
3    15.0    17.0    66.0    NaN

加载全部内容

相关教程
猜你喜欢
用户评论