Python pyecharts
王小王_123 人气:0主题介绍
pyecharts里面有很多的主题可以供我们选择,我们可以根据自己的需要完成主题的配置,这样就告别了软件的限制,可以随意的发挥自己的艺术细胞了。
图表参数
''' def add_yaxis( # 系列名称,用于 tooltip 的显示,legend 的图例筛选。 series_name: str, # 系列数据 y_axis: Sequence[Numeric, opts.BarItem, dict], # 是否选中图例 is_selected: bool = True, # 使用的 x 轴的 index,在单个图表实例中存在多个 x 轴的时候有用。 xaxis_index: Optional[Numeric] = None, # 使用的 y 轴的 index,在单个图表实例中存在多个 y 轴的时候有用。 yaxis_index: Optional[Numeric] = None, # 是否启用图例 hover 时的联动高亮 is_legend_hover_link: bool = True, # 系列 label 颜色 color: Optional[str] = None, # 是否显示柱条的背景色。通过 backgroundStyle 配置背景样式。 is_show_background: bool = False, # 每一个柱条的背景样式。需要将 showBackground 设置为 true 时才有效。 background_style: types.Union[types.BarBackground, dict, None] = None, # 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置。 stack: Optional[str] = None, # 柱条的宽度,不设时自适应。 # 可以是绝对值例如 40 或者百分数例如 '60%'。百分数基于自动计算出的每一类目的宽度。 # 在同一坐标系上,此属性会被多个 'bar' 系列共享。此属性应设置于此坐标系中最后一个 'bar' 系列上才会生效,并且是对此坐标系中所有 'bar' 系列生效。 bar_width: types.Union[types.Numeric, str] = None, # 柱条的最大宽度。比 barWidth 优先级高。 bar_max_width: types.Union[types.Numeric, str] = None, # 柱条的最小宽度。在直角坐标系中,默认值是 1。否则默认值是 null。比 barWidth 优先级高。 bar_min_width: types.Union[types.Numeric, str] = None, # 柱条最小高度,可用于防止某数据项的值过小而影响交互。 bar_min_height: types.Numeric = 0, # 同一系列的柱间距离,默认为类目间距的 20%,可设固定值 category_gap: Union[Numeric, str] = "20%", # 不同系列的柱间距离,为百分比(如 '30%',表示柱子宽度的 30%)。 # 如果想要两个系列的柱子重叠,可以设置 gap 为 '-100%'。这在用柱子做背景的时候有用。 gap: Optional[str] = "30%", # 是否开启大数据量优化,在数据图形特别多而出现卡顿时候可以开启。 # 开启后配合 largeThreshold 在数据量大于指定阈值的时候对绘制进行优化。 # 缺点:优化后不能自定义设置单个数据项的样式。 is_large: bool = False, # 开启绘制优化的阈值。 large_threshold: types.Numeric = 400, # 使用 dimensions 定义 series.data 或者 dataset.source 的每个维度的信息。 # 注意:如果使用了 dataset,那么可以在 dataset.source 的第一行/列中给出 dimension 名称。 # 于是就不用在这里指定 dimension。 # 但是,如果在这里指定了 dimensions,那么 ECharts 不再会自动从 dataset.source 的第一行/列中获取维度信息。 dimensions: types.Union[types.Sequence, None] = None, # 当使用 dataset 时,seriesLayoutBy 指定了 dataset 中用行还是列对应到系列上,也就是说,系列“排布”到 dataset 的行还是列上。可取值: # 'column':默认,dataset 的列对应于系列,从而 dataset 中每一列是一个维度(dimension)。 # 'row':dataset 的行对应于系列,从而 dataset 中每一行是一个维度(dimension)。 series_layout_by: str = "column", # 如果 series.data 没有指定,并且 dataset 存在,那么就会使用 dataset。 # datasetIndex 指定本系列使用那个 dataset。 dataset_index: types.Numeric = 0, # 是否裁剪超出坐标系部分的图形。柱状图:裁掉所有超出坐标系的部分,但是依然保留柱子的宽度 is_clip: bool = True, # 柱状图所有图形的 zlevel 值。 z_level: types.Numeric = 0, # 柱状图组件的所有图形的z值。控制图形的前后顺序。 # z值小的图形会被z值大的图形覆盖。 # z相比zlevel优先级更低,而且不会创建新的 Canvas。 z: types.Numeric = 2, # 标签配置项,参考 `series_options.LabelOpts` label_opts: Union[opts.LabelOpts, dict] = opts.LabelOpts(), # 标记点配置项,参考 `series_options.MarkPointOpts` markpoint_opts: Union[opts.MarkPointOpts, dict, None] = None, # 标记线配置项,参考 `series_options.MarkLineOpts` markline_opts: Union[opts.MarkLineOpts, dict, None] = None, # 提示框组件配置项,参考 `series_options.TooltipOpts` tooltip_opts: Union[opts.TooltipOpts, dict, None] = None, # 图元样式配置项,参考 `series_options.ItemStyleOpts` itemstyle_opts: Union[opts.ItemStyleOpts, dict, None] = None, # 可以定义 data 的哪个维度被编码成什么。 encode: types.Union[types.JSFunc, dict, None] = None, ) '''
我们可以进行图表参数的配置,完成我们需要的结果展示。
主题详解
下面列举了比较详细的主题风格,随意搭配,碰撞出不一样的火花!
from pyecharts.globals import ThemeType help(ThemeType) """ {"theme": ThemeType.MACARONS} BUILTIN_THEMES = ['light', 'dark', 'white'] | | CHALK = 'chalk' #粉笔风 | | DARK = 'dark' #暗黑风 | | ESSOS = 'essos' #厄索斯大陆 | | INFOGRAPHIC = 'infographic' #信息图 | | LIGHT = 'light' #明亮风格 | | MACARONS = 'macarons' #马卡龙 | | PURPLE_PASSION = 'purple-passion' #紫色激情 | | ROMA = 'roma' #石榴 | | ROMANTIC = 'romantic' #浪漫风 | | SHINE = 'shine' #闪耀风 | | VINTAGE = 'vintage' #复古风 | | WALDEN = 'walden' #瓦尔登湖 | | WESTEROS = 'westeros' #维斯特洛大陆 | | WHITE = 'white' #洁白风 | | WONDERLAND = 'wonderland' #仙境 """
柱状图模板系列
海量数据柱状图动画展示
非常多的数据集,我们需要展示的话,我们可以利用这个模板进行展示,下面由于数据量过多我就不展示全部的数据了。
import pyecharts.options as opts from pyecharts.charts import Bar category = ["类目{}".format(i) for i in range(0, 100)] red_bar = ['数据集非常多!!!!'] ( Bar(init_opts=opts.InitOpts(width="1500px", height="700px")) .add_xaxis(xaxis_data=category) .add_yaxis( series_name="系列1", y_axis=red_bar, label_opts=opts.LabelOpts(is_show=False) ) .add_yaxis( series_name="系列2", y_axis=blue_bar, label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts( title_opts=opts.TitleOpts(title="柱状图动画延迟"), xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)), yaxis_opts=opts.AxisOpts( axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), ), ) .render("柱状图动画延迟.html") ) print("图表已生成!请查收!")
收入支出柱状图(适用于记账)
我们在日常的生活中,有收入也有支出,这个模板就是把收入和支出直观的展示在读者面前。
from pyecharts.charts import Bar from pyecharts import options as opts # 一般不适用 x_data = [f"11月{str(i)}日" for i in range(1, 12)] y_total = [0, 900, 1245, 1530, 1376, 1376, 1511, 1689, 1856, 1495, 1292] y_in = [900, 345, 393, "-", "-", 135, 178, 286, "-", "-", "-"] y_out = ["-", "-", "-", 108, 154, "-", "-", "-", 119, 361, 203] bar = ( Bar() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="", y_axis=y_total, stack="总量", itemstyle_opts=opts.ItemStyleOpts(color="rgba(0,0,0,0)"), ) .add_yaxis(series_name="收入", y_axis=y_in, stack="总量") .add_yaxis(series_name="支出", y_axis=y_out, stack="总量") .set_global_opts(yaxis_opts=opts.AxisOpts(type_="value")) .render("收入支出柱状图.html") ) print("图表已生成!请查收!")
三维数据叠加
from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.faker import Faker c = ( Bar() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values(), stack="stack1") .add_yaxis("商家B", Faker.values(), stack="stack1") .add_yaxis("商家C", Faker.values(),stack="stack1") .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts(title_opts=opts.TitleOpts(title="标题")) .render("三维数据折叠.html") ) print("图表已生成!查收!")
柱状图与折线图多维展示(同屏展示)
柱状图里面也有折线图,适合我们在特定情况下进行数据展示,效果还是比较的直观,方便我们可以直接get到数据的价值。
import pyecharts.options as opts from pyecharts.charts import Bar, Line x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"] bar = ( Bar(init_opts=opts.InitOpts(width="1100px", height="600px")) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="蒸发量", y_axis=[ 2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3, ], label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="降水量", y_axis=[ 2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3, ], label_opts=opts.LabelOpts(is_show=False), ) .extend_axis( yaxis=opts.AxisOpts( name="温度", type_="value", min_=0, max_=25, interval=5, axislabel_opts=opts.LabelOpts(formatter="{value} °C"), ) ) .set_global_opts( tooltip_opts=opts.TooltipOpts( is_show=True, trigger="axis", axis_pointer_type="cross" ), xaxis_opts=opts.AxisOpts( name='月份', name_location='middle', name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20 name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16, # 标签字体大小 # type_="category", # axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"), )), yaxis_opts=opts.AxisOpts( name="水量", type_="value", min_=0, max_=250, interval=50, axislabel_opts=opts.LabelOpts(formatter="{value} ml"), axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), ), ) ) line = ( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="平均温度", yaxis_index=1, y_axis=[2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2], label_opts=opts.LabelOpts(is_show=False), ) ) bar.overlap(line).render("折线图-柱状图多维展示.html") print("图表已生成!请查收!")
import pyecharts.options as opts from pyecharts.charts import Bar, Line colors = ["#5793f3", "#d14a61", "#675bba"] x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"] legend_list = ["蒸发量", "降水量", "平均温度"] evaporation_capacity = [ 2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3, ] rainfall_capacity = [ 2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3, ] average_temperature = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2] bar = ( Bar(init_opts=opts.InitOpts(width="1100px", height="600px")) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="蒸发量", y_axis=evaporation_capacity, yaxis_index=0, color=colors[1], ) .add_yaxis( series_name="降水量", y_axis=rainfall_capacity, yaxis_index=1, color=colors[0] ) .extend_axis( yaxis=opts.AxisOpts( name="蒸发量", type_="value", min_=0, max_=250, position="right", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color=colors[1]) ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ) ) .extend_axis( yaxis=opts.AxisOpts( type_="value", name="温度", min_=0, max_=25, position="left", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color=colors[2]) ), axislabel_opts=opts.LabelOpts(formatter="{value} °C"), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ) ) .set_global_opts( yaxis_opts=opts.AxisOpts( type_="value", name="降水量", min_=0, max_=250, position="right", offset=80, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color=colors[0]) ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), ) ) line = ( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="平均温度", y_axis=average_temperature, yaxis_index=2, color=colors[2] ) ) bar.overlap(line).render("多维展示显示数据.html")
单列多维数据展示
from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.commons.utils import JsCode from pyecharts.globals import ThemeType ''' 功能:定义多个列表,一个单列柱状图里面可以显示多个产品的数量(显示各自所占比例)达到一图多效果展示 应用场景:比如有3个产品,分别在星期一到星期天有不同的销售额,每一天三个不同的产品也都有各自的销售额 需要同时展示出这些信息,并分析出每一个产品在一天中所占比例是多少 涉及知识:列表里面嵌套多个字典 ''' list2 = [ {"value": 12, "percent": 12 / (12 + 3)}, # 对于各自的值,同时对于各自的百分比 {"value": 23, "percent": 23 / (23 + 21)}, {"value": 33, "percent": 33 / (33 + 5)}, {"value": 3, "percent": 3 / (3 + 52)}, {"value": 33, "percent": 33 / (33 + 43)}, {"value": 45, "percent": 45 / (45 + 3)}, {"value": 23, "percent": 23 / (23 + 13)}, ] list3 = [ {"value": 3, "percent": 3 / (12 + 3)}, {"value": 21, "percent": 21 / (23 + 21)}, {"value": 5, "percent": 5 / (33 + 5)}, {"value": 52, "percent": 52 / (3 + 52)}, {"value": 43, "percent": 43 / (33 + 43)}, {"value": 3, "percent": 45 / (45 + 3)}, {"value": 13, "percent": 13 / (23 + 13)}, ] # 可以添加多个列表 # list4=[] c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add_xaxis([1, 2, 3, 4, 5, 6, 7]) # 横坐标变量参数 # 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置 # 同一系列的柱间距离,默认为类目间距的 20%,可设固定值 .add_yaxis("产品1", list2, stack="stack1", category_gap="50%") .add_yaxis("产品2", list3, stack="stack1", category_gap="50%") .set_series_opts( label_opts=opts.LabelOpts( position="right", formatter=JsCode( "function(x){return Number(x.data.percent * 100).toFixed() + '%';}" ), ) ) # X Y轴的系列配置 .set_global_opts(title_opts=opts.TitleOpts(title="标题"), xaxis_opts=opts.AxisOpts( name='星期', name_location='middle', name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20 name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # 标签字体大小 )), yaxis_opts=opts.AxisOpts( name='数量', name_location='middle', name_gap=30, name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # font_weight='bolder', )), # toolbox_opts=opts.ToolboxOpts() # 工具选项 ) .render("单列多维占比层次柱状图.html") ) print("图表已生成!请查收!")
3D柱状图
这类图表一般不会用到,但是pyecharts也可以生成这种炫酷的3D模板,来看看吧!
上述3D图形都可以通过鼠标进行控制,翻转
import random from pyecharts import options as opts from pyecharts.charts import Bar3D x_data = y_data = list(range(10)) def generate_data(): data = [] for j in range(10): for k in range(10): value = random.randint(0, 9) data.append([j, k, value * 2 + 4]) return data bar3d = Bar3D(init_opts=opts.InitOpts(width="1500px", height="700px")) for _ in range(10): bar3d.add( "", generate_data(), shading="lambert", xaxis3d_opts=opts.Axis3DOpts(data=x_data, type_="value"), yaxis3d_opts=opts.Axis3DOpts(data=y_data, type_="value"), zaxis3d_opts=opts.Axis3DOpts(type_="value"), ) bar3d.set_global_opts(title_opts=opts.TitleOpts("Bar3D-堆叠柱状图示例")) bar3d.set_series_opts(**{"stack": "stack"}) bar3d.render("3D堆叠柱状图.html")
import random from pyecharts import options as opts from pyecharts.charts import Bar3D from pyecharts.faker import Faker data = [(i, j, random.randint(0, 12)) for i in range(6) for j in range(24)] c = ( Bar3D(init_opts=opts.InitOpts(width="1500px", height="700px")) .add( "", [[d[1], d[0], d[2]] for d in data], xaxis3d_opts=opts.Axis3DOpts(Faker.clock, type_="category"), yaxis3d_opts=opts.Axis3DOpts(Faker.week_en, type_="category"), zaxis3d_opts=opts.Axis3DOpts(type_="value"), ) .set_global_opts( visualmap_opts=opts.VisualMapOpts(max_=20), title_opts=opts.TitleOpts(title="Bar3D-基本示例"), ) .render("3D柱状图_1.html") )
柱状图的模板大全差不多都是这些了,下期文章我们一起领略折线图的魅力吧!
加载全部内容