亲宝软件园·资讯

展开

Python绘制散点图

王小王_123​​​​​​​ 人气:2

散点图

什么是散点图?

散点图是指在数理统计回归分析中,数据点在直角坐标系平面上的分布图, 散点图​​表示因变量随自变量而变化的大致趋势,由此趋势可以选择合适的函数进行经验分布的拟合,进而找到变量之间的函数关系。

散点图有什么用处?

散点图的基本构成要素

散点图主要的构成元素有:数据源,横纵坐标轴,变量名,研究的对象。而基本的要素就是点,也就是我们统计的数据,由这些点的分布我们才能观察出变量之间的关系。

而散点图一般研究的是两个变量之间的关系,往往满足不了我们日常的需求。因此,气泡图的诞生就是为散点图增加变量,提供更加丰富的信息,点的大小或者颜色可以定义为第三个变量,因为,做出来的散点图类似气泡,也由此得名为气泡图。

散点图模板系列

简单散点图

数据越多散点图呈现的效果就越明显。这也就是我们平时在进行建模的时候,采用回归拟合的原则,如果数据是遵循某种函数关系,我们可以通过机器进行训练,不断的迭代达到最优效果。

import pyecharts.options as opts
from pyecharts.charts import Scatter

data = [
[10.0, 8.04],
[8.0, 6.95],
[13.0, 7.58],
[9.0, 8.81],
[11.0, 8.33],
[14.0, 9.96],
[6.0, 7.24],
[4.0, 4.26],
[12.0, 10.84],
[7.0, 4.82],
[5.0, 5.68],
]
data.sort(key=lambda x: x[0])
x_data = [d[0] for d in data]
y_data = [d[1] for d in data]

(
Scatter(init_opts=opts.InitOpts(width="1200px", height="600px"))
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="",
y_axis=y_data,
symbol_size=20,
label_opts=opts.LabelOpts(is_show=False),
)
.set_series_opts()
.set_global_opts(
xaxis_opts=opts.AxisOpts(
type_="value", splitline_opts=opts.SplitLineOpts(is_show=True)
),
yaxis_opts=opts.AxisOpts(
type_="value",
axistick_opts=opts.AxisTickOpts(is_show=True),
splitline_opts=opts.SplitLineOpts(is_show=True),
),
tooltip_opts=opts.TooltipOpts(is_show=False),
)
.render("简单散点图.html")
)

多维数据散点图

我们在平时的运用场景中,发现散点图太多呈现的效果图太密集了,我们只需要知道某一个区域它分布的数量,本来柱状图可以解决,但是这个散点图一个更好,可以反映区域的分布,主要可以看见它的数量趋势变化,根据自己的业务需求来使用吧。

from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker

c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis(
"类别1",
[list(z) for z in zip(Faker.values(), Faker.choose())],
label_opts=opts.LabelOpts(
formatter=JsCode(
"function(params){return params.value[1] +' : '+ params.value[2];}"
)
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="多维度数据"),
tooltip_opts=opts.TooltipOpts(
formatter=JsCode(
"function (params) {return params.name + ' : ' + params.value[2];}"
)
),
visualmap_opts=opts.VisualMapOpts(
type_="color", max_=150, min_=20, dimension=1
),
)
.render("多维数据散点图.html")
)
print([list(z) for z in zip(Faker.values(), Faker.choose())])

散点图显示分割线

显示分割线,其实和之前的没有异样。

from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis("A", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="标题"),
xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
)
.render("分割线.html")
)

散点图凸出大小(二维)

用二维的数据来展示每个类别的分布状况,图表可显示多个类别,这样极大的增强了我们解释的效果。

from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis("1", Faker.values())
.add_yaxis("2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="标题"),
visualmap_opts=opts.VisualMapOpts(type_="size", max_=150, min_=20),
)
.render("凸出大小散点图.html")
)

 3D散点图展示

动态涟漪散点图

之前的散点都是静态的,下面我们来看看动态的散点图;

from pyecharts import options as opts
from pyecharts.charts import EffectScatter
from pyecharts.faker import Faker
c = (
EffectScatter()
.add_xaxis(Faker.choose())
.add_yaxis("", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="散点图"))
.render("动态散点图.html")
)

箭头标志散点图

from pyecharts import options as opts
from pyecharts.charts import EffectScatter
from pyecharts.faker import Faker
from pyecharts.globals import SymbolType

c = (
EffectScatter()
.add_xaxis(Faker.choose())
.add_yaxis("", Faker.values(), symbol=SymbolType.ARROW)
.set_global_opts(title_opts=opts.TitleOpts(title="标题"))
.render("箭头动态散点图.html")
)

加载全部内容

相关教程
猜你喜欢
用户评论