pandas筛选功能
*山河万里* 人气:01 筛选出数据的指定几行数据
data=df.loc[2:5] #这里的[2:5]表示第3行到第5行内容,[]第一个起始是0,表示数据的第一行
2 筛选出数据某列为某值的所有数据记录
data = df[(df['列名1']== ‘列值1')] # 多条件匹配时 data_many=df[(df['列名1']== ‘列值1')&(df['列名2']==‘列值2')] # 多值匹配时 data_many=df[df['列名1'] in [‘值1',‘值2',......]]
3 模式匹配
# 开头包含某值的模式匹配 cond=df['列名'].str.startswith('值') $ 中间包含某值的模式匹配 cond=df['列名'].str.contains('值')
4 范围区间值筛选
# 筛选出基于两个值之间的数据: cond=df[(df['列名1']>‘列值1')&(df['列名1']<‘列值2')]
5 获取某一行某一列的某个值
print(ridership_df.loc['05-05-11','R003']) # 或者 print(ridership_df.iloc[4,0]) # 结果: 1608
6 获取原始的numpy二维数组
print(df.values)
7 根据条件得到某行元素所在的位置
import pandas as pd df = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4],'attr': [22, 33, 22, 44, 66]},index=[10,20,30,40,50]) print(df) a = df[(df.BoolCol==3)&(df.attr==22)].index.tolist() b = df[(df.BoolCol==3)&(df.attr==22)].index[0] c = df[(df.BoolCol==3)&(df.attr==22)].index.values print(a)
8 元素位置筛选
print(date_frame) # 打印完整显示的效果 print(date_frame.shape) # 获取df的行数、列数元祖 print(date_frame.head(2)) # 前2行 print(date_frame.tail(2)) # 后2行 print(date_frame.index.tolist()) # 只获取df的索引列表 print(date_frame.columns.tolist()) # 只获取df的列名列表 print(date_frame.values.tolist()) # 只获取df的所有值的列表(二维列表)
9. 删除多行/多列
# 使用的前提是,dataframe的index和columns用的是数字,利用了drop()和range()函数。 DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') # axis = 0,表示删除行; axis = 1 表示删除列。 # 想删除多行/列,用range即可,比如要删除前3行,drop(range(0,3),axis = 0(默认为零,可不写))即可。
10 to_datetime将字符串格式转化为日期格式
import datetime import pandas as pd dictDate = {'date': ['2019-11-01 19:30', '2019-11-30 19:00']} df = pd.DataFrame(dictDate) df['datetime'] = pd.to_datetime(df['date']) df['today'] = df['datetime'].apply(lambda x: x.strftime('%Y%m%d')) df['tomorrow'] = (df['datetime'] + datetime.timedelta(days=1)).dt.strftime('%Y%m%d')
11 apply() 函数
# pandas 的 apply() 函数可以作用于 Series 或者整个 DataFrame,功能也是自动遍历整个 Series 或者 DataFrame, 对每一个元素运行指定的函数。 def add_extra(nationality, extra): if nationality != "汉": return extra else: return 0 df['ExtraScore'] = df.Nationality.apply(add_extra, args=(5,)) df['ExtraScore'] = df.Nationality.apply(add_extra, extra=5) df['Extra'] = df.Nationality.apply(lambda n, extra : extra if n == '汉' else 0, args=(5,)) def add_extra2(nationaltiy, **kwargs): return kwargs[nationaltiy] df['Extra'] = df.Nationality.apply(add_extra2, 汉=0, 回=10, 藏=5)
12 map() 函数
import datetime import pandas as pd def f(x): x = str(x)[:8] if x !='n': gf = datetime.datetime.strptime(x, "%Y%m%d") x = gf.strftime("%Y-%m-%d") return x def f2(x): if str(x) not in [' ', 'nan']: dd = datetime.datetime.strptime(str(x), "%Y/%m/%d") x = dd.strftime("%Y-%m-%d") return x def test(): df = pd.DataFrame() df1 = pd.read_csv("600694_gf.csv") df2=pd.read_csv("600694.csv") df['date1'] =df2['DateTime'].map(f2) df['date2'] =df1['date'].map(f) df.to_csv('map.csv')
参考
- Pandas之DataFrame操作
- pandas.DataFrame.drop — pandas 1.4.1 documentation
- pandas apply() 函数用法
- pandas.Series.apply — pandas 1.4.1 documentation
总结
加载全部内容