亲宝软件园·资讯

展开

Pandas数据透视

Python丁小杰 人气:1

大家好,我是丁小杰!

今天和大家分享Pandas中四种有关数据透视的通用函数,在数据处理中遇到这类需求时,能够很好地应对。

pandas.melt()

melt函数的主要作用是将DataFrame从宽格式转换成长格式。

pandas.melt(frame,id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None, ignore_index=True)

参数含义

看个例子先:

import pandas as pd

df = pd.DataFrame(
    {'地区': ['A', 'B', 'C'],
     '2020': [80, 60, 40],
     '2021': [800, 600, 400], 
     '2022': [8000, 6000, 4000]})

pd.melt(df,
        id_vars=['地区'],
        value_vars=['2020', '2021', '2022'])

设置var_namevalue_name

df = pd.melt(df,
             id_vars=['地区'],
             value_vars=['2020', '2021', '2022'],
             var_name='年份',
             value_name='销售额')

pandas.pivot()

pivot函数主要用于通过索引及列值对DataFrame重构。

pandas.pivot(data, index=None, columns=None, values=None)

参数含义

用上面的结果举个例子:

df.pivot(index='年份',
         columns='地区',
         values='销售额')

也可以写成以下格式。

df.pivot(index='年份', columns='地区')['销售额']

添加一个销量列,同时统计两个values,这样会使columns变成多层索引。

df['销量'] = df['销售额']/10
df.pivot(index='年份',
         columns='地区',
         values=['销售额', '销量'])

添加一个月份列,指定两个index

df['月份'] = [f'{m}月' for m in range(1, 4)]*3
df.pivot(index=['年份', '月份'],
         columns='地区',
         values='销售额')

使用pivot时需要注意,当indexcolumns出现重复时,会导致ValueError

df = pd.DataFrame(
        {'地区': ['A', 'A', 'B', 'C'],
         '年份': ['2020', '2020', '2021', '2022'],
         '销售额': [800, 600, 400, 200]})

df.pivot(index='地区',
         columns='年份',
         values='销售额')
# ValueError

pandas.pivot_table()

这个函数之前已经单独讲过了,详见Pandas玩转数据透视表,相比于pivotpivot_table的灵活性更强。

pandas.crosstab()

crosstab函数计算两个(或多个)数组的简单交叉表。默认情况下计算元素的频率表。

pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, margins_name='All', dropna=True, normalize=False)

看下例子:

这里默认计算频率。

import numpy as np
array_A = np.array(["one", "two", "two", "three", "three", "three"], dtype=object)
array_B = np.array(["Python", "Python", "Python", "C", "C", "C"], dtype=object)
array_C = np.array(["Y", "Y", "Y", "N", "N", "N"])
pd.crosstab(array_A,
           [array_B, array_C],
           rownames=['array_A'],
           colnames=['array_B', 'array_C'])

新建一个values列,计算总和。

array_D = np.array([1, 4, 9, 16, 25, 36])
pd.crosstab(index=array_A,
            columns=[array_B, array_C],
            rownames=['array_A'],
            colnames=['array_B', 'array_C'],
            values=array_D,
            aggfunc='sum')

加载全部内容

相关教程
猜你喜欢
用户评论